Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
36,5x97+36,5x4-36,5
=36,5x(97+4-1)
=36,5x100
=3650
Chúc em học tốt!☺
\(y+y.\frac{1}{3}.\frac{9}{2}+y.\frac{7}{2}=25\)
\(y+y.6+y.\frac{7}{2}=25\)
\(y.\left(1+6+\frac{7}{2}\right)=25\)
\(y.\frac{21}{2}=25\)
\(y=25:\frac{21}{2}\)
\(y=25.\frac{2}{21}\)
\(y=\frac{50}{21}\)
\(y.5+y.3+y+y=50\)
\(y.\left(5+3+1+1\right)=50\)
\(y.10=50\)
\(y=5\)
a) Ta có: 3x = 2y => \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)
7y = 5z => \(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{15}=\frac{z}{21}\)
=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.15=30\\z=2.21=42\end{cases}}\)
Vậy ...
b) Tương tự câu trên
c) Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) => \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
=> \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=12\\\frac{y}{\frac{4}{3}}=12\\\frac{z}{\frac{5}{4}}=12\end{cases}}\) => \(\hept{\begin{cases}x=12\cdot\frac{3}{2}=18\\y=12\cdot\frac{4}{3}=16\\z=12\cdot\frac{5}{4}=15\end{cases}}\)
Vậy ....
d) HD : Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) => \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
(Sau đó áp dụng t/c của dãy tỉ số bằng nhau rồi làm tương tự như trên)
e) HD: Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\) => x = 2k; y = 3k; z = 5k (*)
Thay x = 2k; y = 3k ; z = 5k vào xyz = 810 => tìm k => thay k ngược lại vào (*)
Nếu ko hiểu cứ hỏi t
b,Sửa đề : \(\frac{x}{3}=\frac{y}{4};\frac{y}{2}=\frac{z}{5}\)\(2x-3y+z=6\)
Ta có : \(\frac{x}{3}=\frac{y}{4}\Leftrightarrow\frac{x}{6}=\frac{y}{8}\)(*)
\(\frac{y}{2}=\frac{z}{5}\Leftrightarrow\frac{y}{8}=\frac{z}{20}\)(**)
Từ (*);(**) \(\Rightarrow\frac{x}{6}=\frac{y}{8}=\frac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{8}=\frac{z}{20}=\frac{2x-3y+z}{2.6-3.8+20}=\frac{49}{8}\)
\(x=36,75;y=49;z=122,5\)
Ta có : \(\frac{x}{4}=\frac{y}{7}\)
\(\Rightarrow\frac{x^2}{16}=\frac{y^2}{49}=\frac{3x^2}{48}=\frac{4y^2}{196}=\frac{3x^2-4y^2}{48-196}=\frac{100}{-148}=-\frac{25}{37}\)
Thay vào là ra nhé !:D
Cái chỗ Nguyễn Quang Trung đúng ròi
\(\Rightarrow\hept{\begin{cases}\frac{x}{4}=-\frac{25}{37}\\\frac{y}{7}=-\frac{25}{37}\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{100}{37}\\y=-\frac{175}{37}\end{cases}}\)
y : 3 . 4 + y : 3 . 2 + y . 8 = 150
4/3y + 2/3y + 8y = 150
10y = 150
y = 150 : 10
y = 15
y : 3 x 4 + y : 3 x 2 + y x 8 = 150
y x 1/12 + y x 1/6 + y x 8 = 150
y x ( 1/12 + 1/6 + 8 ) = 150
y x 8.25 = 150
y = 150 : 8.25
y = 18,(18)
Lời giải:
$x+y-z=3$
$\Rightarrow 3-z=3$
$\Rightarrow z=0$
$x+y=3$
$y-x=1$
$\Rightarrow y=(3+1):2=2; x=y-1=2-1=1$
Vậy $x=1;y=2; z=0$
\(\frac{4y}{3}+\frac{2y}{3}+8y=150\)
\(\frac{6y}{3}+8y=150\)
\(2y+8y=150\)
\(10y=150\)
\(y=15\)
vậy \(y=15\)
y x (4/3+2/3+8)=150
y x 10 = 150
y = 150 : 10 = 15
k mk nha
lớp 5 chưa hok cái này nha!!! ^^
5476575676787887987987685876898779346356545645676567
Lớp 5 mà học đc thì cux giỏi chẳng kém gì lớp 7 ; 8 !!!!!!!
Cái này theo mk giải phương trình mới hỉu !
cau giai ho minh