K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Lời giải:

Vì đt $y=ax+b$ song song với $y=2x+2019$ nên $a=2$

$y=ax+b$ cắt trục tung tại điểm có tung độ $2020$, nghĩa là $(0,2020)\in (y=ax+b)$

$\Leftrightarrow 2020=a.0+b$

$\Rightarrow b=2020$ 

Vậy $a=2; b=2020$

24 tháng 11 2023

a: Thay x=1 và y=2 vào (d), ta được:

\(1\left(a-2\right)+b=2\)

=>a-2+b=2

=>a+b=4(1)

Thay x=3và y=-4 vào (d), ta được:

\(3\left(a-2\right)+b=-4\)

=>3a-6+b=-4

=>3a+b=2(2)

Từ (1),(2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}a+b=4\\3a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b-3a-b=2\\a+b=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2a=2\\a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=4-a=4+2=6\end{matrix}\right.\)

b: Thay x=0 và \(y=1-\sqrt{2}\) vào (d), ta được:

\(0\left(a-2\right)+b=1-\sqrt{2}\)

=>\(b=1-\sqrt{2}\)

Vậy: (d): \(y=x\left(a-2\right)+1-\sqrt{2}\)

Thay \(x=2+\sqrt{2}\) và y=0 vào (d), ta được:

\(\left(2+\sqrt{2}\right)\left(a-2\right)+1-\sqrt{2}=0\)

=>\(\left(a-2\right)\left(2+\sqrt{2}\right)=\sqrt{2}-1\)

=>\(a-2=\dfrac{\sqrt{2}-1}{2+\sqrt{2}}=\dfrac{-4+3\sqrt{2}}{2}\)

=>\(a=\dfrac{3\sqrt{2}}{2}\)

 

16 tháng 12 2023

a: Thay x=-1 và y=2 vào (d), ta được:

\(-\left(m-2\right)+n=2\)

=>-m+2+n=2

=>-m+n=0

=>m-n=0(1)

Thay x=3 và y=-4 vào (d), ta được:

\(3\left(m-2\right)+n=-4\)

=>3m-6+n=-4

=>3m+n=2(2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}m-n=0\\3m+n=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m-n+3m+n=2\\m-n=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4m=2\\n=m\end{matrix}\right.\Leftrightarrow n=m=\dfrac{1}{2}\)

b: Thay x=0 và \(y=1-\sqrt{2}\) vào (d), ta được:

\(0\left(m-2\right)+n=1-\sqrt{2}\)

=>\(n=1-\sqrt{2}\)

Vậy: (d): \(y=\left(m-2\right)x+1-\sqrt{2}\)

Thay \(x=2+\sqrt{2}\) và y=0 vào (d), ta được:

\(\left(m-2\right)\cdot\left(2+\sqrt{2}\right)+1-\sqrt{2}=0\)

=>\(\left(m-2\right)\left(2+\sqrt{2}\right)=\sqrt{2}-1\)

=>\(m-2=\dfrac{\sqrt{2}-1}{2+\sqrt{2}}=\dfrac{-4+3\sqrt{2}}{2}\)

=>\(m=\dfrac{-4+3\sqrt{2}+4}{2}=\dfrac{3\sqrt{2}}{2}\)

c: 2y+x-3=0

=>2y=-x+3

=>\(y=-\dfrac{1}{2}x+\dfrac{3}{2}\)

Để (d) vuông góc với đường thẳng y=-1/2x+3/2 thì

\(-\dfrac{1}{2}\left(m-2\right)=-1\)

=>m-2=2

=>m=4

Vậy: (d): \(y=\left(4-2\right)x+n=2x+n\)

Thay x=1 và y=3 vào y=2x+n, ta được:

\(n+2\cdot1=3\)

=>n+2=3

=>n=1

d: 3x+2y=1

=>\(2y=-3x+1\)

=>\(y=-\dfrac{3}{2}x+\dfrac{1}{2}\)

Để (d) song song với đường thẳng \(y=-\dfrac{3}{2}x+\dfrac{1}{2}\) thì

\(\left\{{}\begin{matrix}m-2=-\dfrac{3}{2}\\n\ne\dfrac{1}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=\dfrac{1}{2}\\n\ne\dfrac{1}{2}\end{matrix}\right.\)

Vậy: (d): \(y=\left(\dfrac{1}{2}-2\right)x+n=-\dfrac{3}{2}x+n\)

Thay x=1 và y=2 vào (d), ta được:

\(n-\dfrac{3}{2}=2\)

=>\(n=2+\dfrac{3}{2}=\dfrac{7}{2}\left(nhận\right)\)

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

a) Đúng

b) Sai

c) Sai

d) Đúng

16 tháng 12 2023

a: Gọi hàm số cần tìm có dạng là y=ax+b(a<>0)

Vì đồ thị của hàm số y=ax+b song song với đường thẳng y=5x+1 nên \(\left\{{}\begin{matrix}a=5\\b\ne1\end{matrix}\right.\)

Vậy: y=5x+b

Thay x=2 và y=-3 vào y=5x+b, ta được:

\(b+5\cdot2=-3\)

=>b+10=-3

=>b=-13

Vậy: y=5x-13

b: Thay y=5 vào y=2x-1, ta được:

2x-1=5

=>2x=6

=>x=3

Thay x=3 và y=5 vào y=ax+b, ta được:

\(a\cdot3+b=5\)

=>3a+b=5(1)

Thay x=2 và y=-3 vào y=ax+b, ta được:

2*a+b=-3

=>2a+b=-3(2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}3a+b=5\\2a+b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+b-2a-b=5-\left(-3\right)\\2a+b=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=8\\b=-3-2a=-3-16=-19\end{matrix}\right.\)

vậy: y=8x-19

a: Để (d)//(d1) thì \(\left\{{}\begin{matrix}m+1=-\dfrac{1}{2}\\-5< >3\left(đúng\right)\end{matrix}\right.\)

=>\(m+1=-\dfrac{1}{2}\)

=>\(m=-\dfrac{3}{2}\)

b: Thay x=2 vào y=x+3, ta được:

\(y=2+3=5\)

Thay x=2 và y=5 vào (d), ta được:

\(2\left(m+1\right)-5=5\)

=>2(m+1)=10

=>m+1=5

=>m=5-1=4

c: Tọa độ A là:

\(\left\{{}\begin{matrix}x=0\\y=\left(m+1\right)x-5=0\cdot\left(m+1\right)-5=-5\end{matrix}\right.\)

=>A(0;-5)

\(OA=\sqrt{\left(0-0\right)^2+\left(-5-0\right)^2}=\sqrt{0^2+5^2}=5\)

Tọa độ B là:

\(\left\{{}\begin{matrix}\left(m+1\right)x-5=0\\y=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(m+1\right)x=5\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{m+1}\\y=0\end{matrix}\right.\)

=>\(B\left(\dfrac{5}{m+1};0\right)\)

\(OB=\sqrt{\left(\dfrac{5}{m+1}-0\right)^2+\left(0-0\right)^2}\)

\(=\sqrt{\left(\dfrac{5}{m+1}\right)^2}=\dfrac{5}{\left|m+1\right|}\)

Ox\(\perp\)Oy

=>OA\(\perp\)OB

=>ΔOAB vuông tại O

ΔOAB vuông tại O

=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot5\cdot\dfrac{5}{\left|m+1\right|}=\dfrac{25}{2\left|m+1\right|}\)

Để \(S_{AOB}=5\) thì \(\dfrac{25}{2\left|m+1\right|}=5\)

=>\(2\left|m+1\right|=5\)

=>|m+1|=5/2

=>\(\left[{}\begin{matrix}m+1=\dfrac{5}{2}\\m+1=-\dfrac{5}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{2}\\m=-\dfrac{7}{2}\end{matrix}\right.\)

 

4 tháng 4 2021

b, xét pt hoành độ giao điểm:

-x²=4x+m

=> x²+4x+m=0

a=1.  b= 4.  c=m

Để pt có 2 No pb=> ∆>0

<=>4²-4×1×m>0

<=>16-4m>0

<=> -4m>-16

<=> m<16÷4=4

Vậy m=4 pt có 2No pb

16 tháng 12 2023

Gọi hàm số cần tìm có dạng là y=ax+b

Vì đồ thị hàm số y=ax+b song song với đường thẳng y=2x-1 nên ta có:

\(\left\{{}\begin{matrix}a=2\\b\ne-1\end{matrix}\right.\)

Vậy: y=2x+b

Thay x=1 vào y=3x+2, ta được:

\(y=3\cdot1+2=5\)

Thay x=1 và y=5 vào y=2x+b, ta được:

\(b+2\cdot1=5\)

=>b+2=5

=>b=3

Vậy: hàm số cần tìm là y=2x+3

HQ
Hà Quang Minh
Giáo viên
12 tháng 9 2023

Đáp án đúng là C

Đường thẳng \(y = \dfrac{1}{2}x + 3\) có hệ số góc là \(a = \dfrac{1}{2}\); Đường thẳng \(y =  - \dfrac{1}{2}x + 3\) có hệ số góc là \(a = \dfrac{{ - 1}}{2}\). Do đó, hai đường thẳng này cắt nhau.

Lại có:  Đường thẳng \(y = \dfrac{1}{2}x + 3\) cắt trục tung tại điểm \(A\left( {0;3} \right)\); Đường thẳng \(y =  - \dfrac{1}{2}x + 3\) cắt trục tung tại điểm \(A\left( {0;3} \right)\). Do đó, \(A\) là giao điểm của hai đường thẳng.

Hoành độ điểm \(A\) là \(x = 0\); tung độ của điểm \(A\) là \(y = 3\).