Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
\(y'=3x^2-6mx+6m\)
Hàm số y có 2 điểm cực trị \(\Leftrightarrow\Delta'>0\)
\(\Leftrightarrow\left(-3m\right)^2-18m>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>2\end{matrix}\right.\)
1.
Nhắc nhở một tý: Phương trình bậc 3 thì chỉ có thể có 2 cực trị hoặc là không có cực trị nào hết, không phương trình bậc 3 nào có 1 cực trị hết.
\(y'=x^3-6mx+4m^3\)
Hàm số có cực trị \(\Leftrightarrow y'=0\) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\)
\(\Leftrightarrow\left(-3m\right)^2-4m^3>0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m< \frac{9}{4}\end{matrix}\right.\)
nếu có đáp án trắc nghiệm thì theo mình làm bài này nhanh như sau:
tìm tập xác định D=R
tính y', tìm điều kiện để cho hàm số có 3 điểm cực trị là pt y'=0 có 3 nghiệm phân biệt
áp dụng công thức tính nhanh :b^2 -6ac, suy ra m , kết hợp với điều kiện hàm số có 3 điểm cực trị, suy ra m cần tìm
lưu ý: công thức mình đưa ra là b^2-6ac chỉ áp dụng cho hàm bậc 4 trùng phương, 3 điểm cực trị là 3 đỉnh của tam giác và có trọng tâm là gốc tọa độ.
ta co y'=3x2-3m. h/s co 2 diem cuc tri<=>y'=0 co 2no pbiet # 2 <=>Δ>0 g(2)#0 <=>-4.3.(-3m)>0 3.(-2)2-3m#0 <=>m>0 m#4 ' ▲y'=0 =>x1=can(m) hoac x2=-can(m) (*) goi B(x1,x13-3mx1+1) va C(x2,x23-3mx2+1) thay (*) vao toa do B,C tinh vecto AB va vecto AC Cho 2 vecto dok =nhau binh phuong 2 ve => giai ra m. ket hop voi dk phia tren roi ket luan
Lời giải:
Ta có: \(y'=3x^2-6(m+1)x+12m\)
\(y'=0\Leftrightarrow x^2-2(m+1)x+4m=0(*)\)
Nếu $A,B$ là hai điểm cực trị của đths thì $x_A,x_B$ là hai nghiệm của pt $(*)$
Theo định lý Viete: \(x_A+x_B=2(m+1)\)
Nếu $O$ là trọng tâm của tam giác $ABC$ thì:
\(\frac{x_A+x_B+x_C}{3}=x_O=0\Rightarrow \frac{2(m+1)-1}{3}=0\)
\(\Rightarrow m=-\frac{1}{2}\)
Bây giờ ta chỉ cần thử lại với giá trị của $m$ vừa tìm được thì \(\frac{y_A+y_B+y_C}{3}=y_O=0\) hay không (đã ktra và thấy thỏa mãn)
Do đó $m=\frac{-1}{2}$
Lời giải:
ĐTHS có 3 điểm cực trị khi \(y'=4x^3-4(m+1)x=0\) có ba nghiệm phân biệt.
\(\Leftrightarrow x[x^2-(m+1)]=0\) có ba nghiệm phân biệt.
PT có một nghiệm bằng $0$. \(\Rightarrow x^2-(m+1)=0\) phải có hai nghiệm phân biệt khác \(0\Rightarrow m>-1\)
Vì \(A\in Oy\Rightarrow A(0,m)\)
Khi đó hai điểm $B,C$ lần lượt là: \((\sqrt{m+1},-m^2-m-1);(-\sqrt{m+1},-m^2-m-1)\)
Ta có \(OA=BC\Leftrightarrow OA^2=BC^2 \leftrightarrow m^2=4(m+1)\Leftrightarrow m=2\pm 2\sqrt{2}\)
(thỏa mãn điều kiện của $m$ )
giups minh vs
đề có đúng ko bạn mình làm ko đc nó chỉ có cực trị thôi :))