K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`@` `\text {Ans}`

`\downarrow`

\((x+y)(x-y)+(xy^4-x^3y^2) \div (xy^2) \)

`= x(x-y) + y(x-y) + xy^4 \div xy^2 - x^3y^2 \div xy^2`

`= x^2 - xy + xy - y^2 + y^2 - x^2`

`= (x^2 - x^2) + (-xy + xy) + (-y^2 + y^2)`

`= 0`

24 tháng 10 2016

a) \(x^2+2x^2+x=x\left(x+2x+1\right)=x\left(x+1\right)^2\)

b) \(xy+y^2-x-y=\left(xy-x\right)+y^2-y=x\left(y-1\right)+y\left(y-1\right)=\left(y-1\right)\left(x+y\right)\)mấy câu sau bạn làm tương tự nhé, đặt biến x với x và y với y là được. có gì ib face cho mình

có gì sai xót mong m.n bỏ qua và nhắc nhở ạ

25 tháng 10 2016

mình cảm ơn ạ

7 tháng 10 2019

\(\frac{x^3+y^3}{x^2+xy+y^2}\)

\(=\frac{\left(x+y\right)\left(x^2+xy+y^2\right)}{x^2+xy+y^2}\)

\(=x+y\)

3 tháng 5 2020

\(A=\left(x-y\right)^2-2\left(x^2-xy-y^2\right)=x^2-2xy+y^2-2x^2+2xy+2y^2\)

\(=-x^2+3y^2\)

Bài 1: 

a: \(\dfrac{x-1}{x+1}-\dfrac{x+1}{x-1}+\dfrac{4}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2-2x+1-x^2-2x-1+4}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{-4x+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{-4}{x+1}\)

b: \(=\dfrac{xy\left(x^2+y^2\right)}{x^4y}\cdot\dfrac{1}{x^2+y^2}=\dfrac{x}{x^4}=\dfrac{1}{x^3}\)

c: Đề thiếu rồi bạn

2 tháng 12 2017

a) (2x^2 +2xy - xy -y^2 ) / (2x^2 - 2xy - xy +y^2)

= 2x(x+y) - y(x+y)  /  2x(x-y) - y(x-y)

= (2x-y)(x+y)  /  (2x-y)(x-y)

= x+y/x-y

14 tháng 4 2020

Rút gọn cái sau:

\(\frac{32x+4x^2+2x^3}{x^3+64}\)

\(=\frac{2x\left(x^2+2x+16\right)}{\left(x+4\right)\left(x^2-4x+16\right)}\)

Đề có vẻ sai sai ? 

27 tháng 10 2020

x2 + xy + 5x + 5y = ( x2 + xy ) + ( 5x + 5y ) = x( x + y ) + 5( x + y ) = ( x + y )( x + 5 )

x2 - y2 + 3x - 3y = ( x2 - y2 ) + ( 3x - 3y ) = ( x - y )( x + y ) + 3( x - y ) = ( x - y )( x + y + 3 )

27 tháng 10 2020

x² + xy + 5x + 5y 

= (x²+ xy) + ( 5x+5y)

= x(x+y) + 5(x+y)

= (x+y)(x+5)

x² - y² + 3x - 3y

= (x² - y²) + ( 3x -3y)

= (x-y)(x+y) + 3(x-y)

= (x-y)(x+y+3)

chúc bạn học tốt ^^

a) Ta có: \(4\left(x-2\right)^2+xy-2y\)

\(=4\left(x-2\right)^2+y\left(x-2\right)\)

\(=\left(x-2\right)\left(4x-8+y\right)\)

b) Ta có: \(x\left(x-y\right)^3-y\left(y-x\right)^2-y^2\left(x-y\right)\)

\(=x\left(x-y\right)^3-y\left(x-y\right)^2-y^2\left(x-y\right)\)

\(=\left(x-y\right)\left[x\left(x-y\right)^2-y\left(x-y\right)-y^2\right]\)