\(\frac{1}{x}+\frac{1}{y+1}\le1\)

\(P=x+y+\frac...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2020

Ta có : \(VP=\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{xy}{yx}}=2\)

Vậy \(Q_{min}=2\)với \(x=y\)

mình không chắc về phân bđt này lắm

Đặt x=a, \(\frac{1}{y}=b\)\(\Rightarrow a+b\le1\)

Ta có: \(Q=ab+\frac{1}{ab}=16ab+\frac{1}{ab}-15ab\ge2\sqrt{\frac{16ab}{ab}}-\frac{15.\left(a+b\right)^2}{4}=8-\frac{15.1}{4}=\frac{17}{4}\)

Dấu "=" xảy ra khi a=b=\(\frac{1}{2}\)hay \(x=\frac{1}{2},y=2\)

1 tháng 10 2019
https://i.imgur.com/gHPfwmz.jpg
NV
1 tháng 10 2019

\(Q\ge2xy+\frac{2}{xy}=2xy+\frac{1}{8xy}+\frac{15}{8xy}\ge2\sqrt{\frac{2xy}{8xy}}+\frac{15}{2\left(x+y\right)^2}\ge1+\frac{15}{2}=\frac{17}{2}\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

13 tháng 7 2020

\(P=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{2}{2xy+2yz+2xz}\)

Theo Bất đẳng thức Cauchy Schwarz dạng Engel ta được :

\(\frac{1}{x^2+y^2+z^2}+\frac{\sqrt{2}^2}{2xy+2yz+2xz}\ge\frac{\left(1+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}\)

\(\ge\frac{1+2\sqrt{2}+2}{1^2}=3+2\sqrt{2}\)

Đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}...\\...\\...\end{cases}}\)

Vậy \(Min_P=3+2\sqrt{2}\)khi và chỉ khi ...

dấu = bạn tự xét nhé :V

13 tháng 7 2020

dấu = xảy ra ko đúng rồi phải

2 tháng 5 2020

Áp dụng công thức \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\left(x,y>0\right)\)

Ta có \(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{y+z}\right)\)

\(\frac{1}{y+z}\le\frac{1}{4y}+\frac{1}{4z}\)

=> \(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{4y}+\frac{1}{4z}\right)\left(1\right)\)

Tương tự \(\hept{\begin{cases}\frac{1}{x+2y+z}\le\frac{1}{4}\left(\frac{1}{4x}+\frac{1}{2y}+\frac{1}{4z}\right)\left(2\right)\\\frac{1}{x+y+2z}\le\frac{1}{4}\left(\frac{1}{4x}+\frac{1}{4y}+\frac{1}{2z}\right)\left(3\right)\end{cases}}\)

(1)(2)(3) => \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

=> \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)

Dấu "=" xảy ra <=> \(x=y=z=\frac{3}{4}\)

5 tháng 8 2017

Theo AM-GM , có :

\(x+y\ge2\sqrt{xy}\)

\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\)

Nhân vế theo vế :

\( \left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

5 tháng 8 2017

Kurosaki Akatsu​   mình đang cần chứng minh phần sau nhé:))

8 tháng 3 2022

Áp dụng BĐT phụ \(4xy\le\left(x+y\right)^2\le1\)\(\Leftrightarrow xy\le\frac{1}{4}\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

Có \(K=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)\(=x^2+2x.\frac{1}{x}+\frac{1}{x^2}+y^2+2y.\frac{1}{y}+\frac{1}{y^2}\)\(=x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}+4\)

Áp dụng BĐT Cô-si cho 2 số dương \(x^2\)và \(y^2\), ta có: \(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)

Tương tự, ta có \(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2}.\frac{1}{y^2}}=\frac{2}{xy}\)

Từ đó \(K\ge2xy+\frac{2}{xy}+4\)\(=32xy+\frac{2}{xy}-30xy+4\)

Áp dụng BĐT Cô-si cho 2 số dương \(32xy\)và \(\frac{2}{xy}\), ta có: \(32xy+\frac{2}{xy}\ge2\sqrt{32xy.\frac{2}{xy}}=16\)

Lại có \(xy\le\frac{1}{4}\Leftrightarrow-xy\ge-\frac{1}{4}\)nên \(K\ge16-\frac{30}{4}+4=\frac{25}{2}\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

Vậy GTNN của K là \(\frac{25}{2}\)khi \(x=y=\frac{1}{2}\)

8 tháng 3 2022

\(K=x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}+4=x^2+\dfrac{1}{16x^2}+y^2+\dfrac{1}{16y^2}+\dfrac{15}{16x^2}+\dfrac{15}{16y^2}+4\ge\dfrac{1}{2}+\dfrac{1}{2}+4+\dfrac{2.15}{16xy}=5+\dfrac{2.15}{16xy}\)

\(x+y\ge2\sqrt{xy};\Rightarrow2\sqrt{xy}\le x+y\le1\Rightarrow2\sqrt{xy}\le1\Leftrightarrow xy\le\dfrac{1}{4}\)

\(\Rightarrow K\ge5+\dfrac{2.15}{16.\dfrac{1}{4}}=\dfrac{25}{2}\)

19 tháng 10 2020

Bổ đề: \(2xy\le x^2+y^2\)

\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}=\frac{1}{x^2+y^2}+\frac{4}{2xy}\ge\frac{1}{x^2+y^2}+\frac{4}{x^2+y^2}=\frac{5}{x^2+y^2}\ge5\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{\sqrt{2}}\)

18 tháng 2 2020

Áp dụng bất đẳng thức : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)( với x , y > 0 )
Ta có : \(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{y+z}\right);\frac{1}{y+z}\le\frac{1}{4y}+\frac{1}{4z}\)

Suy ra : 

\(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{4y}+\frac{1}{4z}\right)\left(1\right)\)

Tường tự ta có : 

\(\frac{1}{x+2y+z}\le\frac{1}{4}\left(\frac{1}{4x}+\frac{1}{2y}+\frac{1}{4z}\right)\left(2\right)\)

\(\frac{1}{x+y+2z}\le\frac{1}{4}\left(\frac{1}{4x}+\frac{1}{4y}+\frac{1}{2z}\right)\left(3\right)\)

Từ (1) , (2) và (3) 

\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)

Dấu " = " xảy ra khi \(x=y=z=\frac{3}{4}\)

Chúc bạn học tốt !!!

23 tháng 5 2020

địt mẹ laaaaaa