Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{2}=\frac{y}{4}\Rightarrow\frac{x}{10}=\frac{y}{20}\) (*)
\(\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{y}{20}=\frac{z}{24}\)(**)
Từ (*) và (**) \(\Rightarrow\frac{x}{10}=\frac{y}{20}=\frac{z}{24}=k\)\(\Rightarrow x=10k\); \(y=20k\); \(z=24k\)
Ta có : \(x+y+z=486\Rightarrow10k+20k+24k=486\Rightarrow54k=486\Rightarrow k=\frac{486}{54}=9\)
Do đó : \(\frac{x}{10}=9\Rightarrow x=9.10=90\)
\(\frac{y}{20}=9\Rightarrow y=9.20=180\)
\(\frac{z}{24}=9\Rightarrow z=9.24=216\)
Vậy .....
\(\frac{x}{2}\)= \(\frac{y}{4}\); \(\frac{y}{5}\)= \(\frac{z}{6}\) và x+y+z=486
\(\Rightarrow\)\(\frac{x}{10}\)= \(\frac{y}{20}\); \(\frac{y}{20}\)= \(\frac{z}{24}\)
\(\Rightarrow\)\(\frac{x}{10}\)= \(\frac{y}{20}\)= \(\frac{z}{24}\)và x+y+z=486
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}\)= \(\frac{y}{20}\)= \(\frac{z}{24}\)=\(\frac{x+y+Z}{10+20+24}\)= \(\frac{486}{54}\)= 9
Suy ra: \(\frac{x}{10}\)= 9\(\Rightarrow\)x= 9.10=90
\(\frac{y}{20}\)= 9\(\Rightarrow\)y= 20.9= 180
\(\frac{z}{24}\)= 9\(\Rightarrow\)z= 24.9= 216
Vậy x= 90; y=180; z= 216
1/ (x+1)(y+2) =5
Do x;y thuộc N nên x+1 ; y+2 cũng thuộc N
\(TH1:\Leftrightarrow\hept{\begin{cases}x+1=1\\y+2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=1-1\\y=5-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=3\end{cases}}}\\\)
\(TH2:\Leftrightarrow\hept{\begin{cases}x+1=5\\y+2=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=5-1\\y=1-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=-1\end{cases}}}\)
x | 0 | 4 |
y | 3 | -1 |
mà x;y\(\in\)N nên x;y=0;3
Các bài khác bạn làm tương tự nha! (vì mk viết rất chậm )
a) => (x-3)(y-6)\(\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
TH1: x-3=2 ; y-6=2
x-3=2
=> x=5
y-6=2
=>y=8
TH2: x-3=-2 ; y-6=-2
x-3=-2
=>x=1
y-6=-2
=>y=4
TH3:x-3=1 ;y-6=4
x-3=1
=> x=4
y-6=4
=> y=10
TH4: x-3=4;y-6=1
x-3=4
=>x=7
y-6=1
=>y=7
TH5:x-3=-1;y-6=-4
x-3=-1
=>x=2
y-6=-4
=>y=2
TH6:x-3=-4;y-6=-1
x-3=-4
=>x=-1
y-6=-1
=>y=5
Vậy .....
b) ta có : |x| luôn \(\ge0\forall x\in Z\)
|y| luôn \(\ge0\forall y\in Z\)
TH1: |x|=1;|y|=1
\(\left|x\right|=1\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
\(\left|y\right|\Rightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)
TH2: |x|=0 ;|y|=2
\(\left|x\right|=0\Rightarrow x=0\)
\(\left|y\right|=2\Rightarrow\orbr{\begin{cases}y=2\\y=-2\end{cases}}\)
TH3: |x|=2;|y|=0
\(\left|x\right|=2\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
\(\left|y\right|=0\Rightarrow y=0\)
1a) \(\frac{x-3}{x+7}=\frac{-5}{-6}\)
=> \(\frac{x-3}{x+7}=\frac{5}{6}\)
=> (x - 3).6 = 5.(x + 7)
=> 6x - 18 = 5x + 35
=> 6x - 5x = 35 + 18
=> x = 53
b) \(\frac{x-7}{x+3}=\frac{4}{3}\)
=> (x - 7). 3 = (x + 3). 4
=> 3x - 21 = 4x + 12
=> 3x - 4x = 12 + 21
=> -x = 33
=> x = -33
c) \(\frac{x-10}{6}=-\frac{5}{18}\)
=> (x - 10) . 18 = -5 . 6
=> 18x - 180 = -30
=> 18x = -30 + 180
=> 18x = 150
=> x = 150 : 18 = 25/3
d) \(\frac{x-2}{4}=\frac{25}{x-2}\)
=> (x - 2)(x - 2) = 25 . 4
=> (x - 2)2 = 100
=> (x - 2)2 = 102
=> \(\orbr{\begin{cases}x-2=10\\x-2=-10\end{cases}}\)
=> \(\orbr{\begin{cases}x=12\\x=-8\end{cases}}\)
e) \(\frac{7}{x}=\frac{x}{28}\)
=> 7 . 28 = x . x
=> 196 = x2
=> x2 = 142
=> \(\orbr{\begin{cases}x=14\\x=-14\end{cases}}\)
f) \(\frac{40+x}{77-x}=\frac{6}{7}\)
=> (40 + x) . 7 = (77 - x).6
=> 280 + 7x = 462 - 6x
=> 280 - 462 = -6x + 7x
=> -182 = x
=> x = -182
1. Vì x , y thuộc Z
Mà ( x - 6 ) . ( y + 2 ) = 7
=> ( x - 6 ) và ( y + 2 ) thuộc ước của 7
Ta có : Ư ( 7 ) = { 1 ; -1 ; 7 ; -7 }
Vậy : x - 6 = 1 , y + 2 = 7 ; x - 6 = -1 , y+ 2 = -7 ; x - 6 = 7 , y + 2 = 1 ; x - 6 = -7 , y + 2 = -1
=> ( x ; y ) = ( 7 ; 5 ) = ( 5 ; -9 ) = ( 13 , -1 ) ; ( -1 ; -3 )
TK:
Để giải hệ phương trình này, chúng ta sẽ sử dụng các phương pháp đơn giản hóa.
Trước tiên, ta quan sát rằng |x + 2| là giá trị tuyệt đối của biểu thức x + 2, nó sẽ nhận giá trị từ âm vô cùng đến 2 khi x từ âm vô cùng đến âm 2, và nó sẽ nhận giá trị từ 0 đến dương vô cùng khi x từ -2 đến dương vô cùng.
Do đó, để đơn giản hóa vấn đề, ta sẽ xem x + 2 là một số nguyên dương, gọi là a. Khi đó, |x + 2| = a, và x + 2 có thể bằng a hoặc -a.
Ta sẽ có hai trường hợp:
1. Khi x + 2 = a:
\[ y = 6 - |x + 2| = 6 - a \]
2. Khi x + 2 = -a:
\[ y = 6 - |x + 2| = 6 - (-a) = 6 + a \]
Bây giờ, ta sẽ thay a bằng x + 2:
1. Khi x + 2 = a:
\[ y = 6 - a \]
\[ y = 6 - (x + 2) \]
\[ y = 6 - x - 2 \]
\[ y = 4 - x \]
2. Khi x + 2 = -a:
\[ y = 6 + a \]
\[ y = 6 + (x + 2) \]
\[ y = 6 + x + 2 \]
\[ y = 8 + x \]
Bây giờ, chúng ta sẽ sử dụng hệ phương trình ban đầu để giải x và y:
\[ \begin{cases} x + y = 4 \\ y = 4 - x \end{cases} \]
Thay y trong phương trình thứ nhất bằng 4 - x:
\[ x + (4 - x) = 4 \]
\[ 4 = 4 \]
Phương trình trên đúng với mọi giá trị của x và y.
Vậy, hệ phương trình có vô số nghiệm và không có nghiệm cụ thể.
Bài này để lớp 6 thì ko đúng