Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 tại x = 5 và y = 4.Trước hết ta thu gọn đa thứcA = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 = x2 + 2xy + y3 Thay x = 5; y = 4 ta được:A = 52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.Vậy A = 129 tại x = 5 và y = 4.b) M = xy - x2y2 + x4y4 – x6y6 + x8y8 tại x = -1 và y = -1.Thay x = -1; y = -1 vào biểu thức ta được: M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8 = 1 -1 + 1 - 1+ 1 = 1. Tải xuống 0
a) Ta có : \(x^2+2xy-3x^3+2y^3+3x^3-y^3\)
\(=x^2+2xy+\left(-3x^3+3x^3\right)+\left(2y^3-y^3\right)\)
\(=x^2+2xy+y^3\)
Thay x = 5,y = 4 vào đa thức trên ta có : \(x^2+2xy+y^3=5^2+2\cdot5\cdot4+4^3=25+40+64=129\)
b) Thay \(x=-1,y=-1\) vào đa thức trên ta có :
(-1)(-1) - (-1)2(-1)2 + (-1)4(-1)4 - (-1)6(-1)6 + (-1)8(-1)8
= 1 - 1 + 1 - 1 + 1 =1
a, Thay x=-1 vào biểu thức A ta có:
\(A=2\left(-1\right)^2+\left(-1\right)+1\)
\(A=2.1+\left(-1\right)+1\)
\(A=2\)
Thay \(x=\dfrac{1}{4}\) vào biểu thức A ta có:
\(A=2\left(\dfrac{1}{4}\right)^2+\dfrac{1}{4}+1\)
\(A=2.\dfrac{1}{16}+\dfrac{1}{4}+1\)
\(A=\dfrac{1}{8}+\dfrac{1}{4}+1\)
\(A=\dfrac{1}{8}+\dfrac{2}{8}+1\)
\(A=\dfrac{11}{8}\)
b, Thay x=-1; y=3 vào biểu thức B ta có:
\(B=\left(-1\right)^2.3^2+\left(-1\right).3+\left(-1\right)^3+3^3\)
\(B=1.9-3-1+27\)
\(B=2+27\)
\(B=29\)
c, Thay x=-1 vào biểu thức C ta có:
\(C=\left(-1\right)^2+\left(-1\right)^4+\left(-1\right)^6+\left(-1\right)^8+...+\left(-1\right)^{100}\)
\(C=1^4+1^6+1^8+1^9+...+1^{100}\)
\(C=100\)
d, Thay x+y=3; xy=-5 vào biểu thức D ta có:
\(D=3.\left(x+1\right).\left(y+1\right)\)
\(D=3.\left[\left(x.y\right)+1\right]\)
\(D=3.\left[\left(-5\right)+1\right]\)
\(D=3.\left(-4\right)\)
\(D=-12\)
Tích mình nha!!!
\(a\)) \(xy+x^2y^2+x^3y^3+x^4y^4+...+x^{10}y^{10}\)
\(\Rightarrow xy+\left(xy\right)^2+\left(xy\right)^3+\left(xy\right)^4+...+\left(xy\right)^{10}\)
Mà \(x=-1\) , \(y=1\) nên \(xy=\left(-1\right).1=-1\)
\(\Rightarrow-1+\left(-1\right)^2+\left(-1\right)^3+\left(-1\right)^4+...+\left(-1\right)^{10}\)
\(\Rightarrow-1+1-1+1-...+1\)\(=0\)
Vậy …..
\(b\)) Làm tương tự như phần a) , ( nhóm cả x,y,z vào trong ngoặc rồi đặt số mũ 1,2,3,4,…,10 ra ngoài)
Thay x=-1; y = -1, ta có:
\(\left(-1\right)\left(-1\right)+\left(-1\right)^2.2.\left(-1\right)^2+\left(-1\right)^4\left(-1\right)^{44}+\left(-1\right)^6\left(-1\right)^6+\left(-1\right)^8\left(-1\right)^8\)
\(=1+1.2.1+1.1+1.1+1.1\)
\(=1+2+1+1+1\)
\(=6\)
Vậy:..................................................................
a) xy + x22y2 + x4y44 + x6y6 + x8y8
= (-1).(-1) + (-1)2.2.(-1)2 + (-1)4.(-1)44 + (-1)6.(-1)6 + (-1)8.(-1)8
= 1 + 2 + 1 + 1 + 1
= 6
Sai đâu tính lại hộ nhé
M = xy - x2y2 + x4y4 – x6y6 + x8y8 tại x = -1 và y = -1.
Thay x = -1; y = -1 vào biểu thức ta được:
M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8
= 1 -1 + 1 - 1+ 1 = 1.
xy - x2y2 + x4y4 – x6y6 + x8y8 tại x = -1 và y = -1.
Thay x = -1; y = -1 vào biểu thức ta được:
(-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8
= 1 -1 + 1 - 1+ 1
= 1