Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Từ \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\) (1)
Từ \(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\) (2)
Từ (1) và (2) =>\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x=-3\cdot9\\y=-3\cdot7\\z=-3\cdot3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-27\\y=-21\\z=-9\end{matrix}\right.\)
b) Từ \(\dfrac{x}{y}=\dfrac{7}{20}\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}\) (1)
Từ \(\dfrac{y}{z}=\dfrac{5}{8}\Rightarrow\dfrac{y}{5}=\dfrac{z}{8}\Rightarrow\dfrac{y}{20}=\dfrac{z}{32}\) (2)
Từ (1) và (2) =>\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}=\dfrac{2x+5y-2z}{14+100-64}=\dfrac{100}{50}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot7\\y=2\cdot20\\z=2\cdot32\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=14\\y=40\\z=64\end{matrix}\right.\)
c) Đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)
=> \(x=12k\) ; \(y=9k\) ;\(z=5k\)
=> xyz = \(12k\cdot9k\cdot5k\) =\(540\cdot k^3\) = 20
=>\(k^3=20:540=\dfrac{1}{27}=\left(\dfrac{1}{3}\right)^3\)
=>\(k=\dfrac{1}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\cdot12\\y=\dfrac{1}{3}\cdot9\\z=\dfrac{1}{3}\cdot5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\y=3\\z=\dfrac{5}{3}\end{matrix}\right.\)
d) Từ \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}\Rightarrow\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2+z^2}{25+49+9}=\dfrac{585}{83}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{585}{83}\cdot25\\y^2=\dfrac{585}{83}\cdot49\\z^2=\dfrac{585}{83}\cdot9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^2=\\y^2=\\z^2=\end{matrix}\right.\) đề bài sai nên ko tìm được x ; y ; z
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=>\left\{{}\begin{matrix}x=\dfrac{5y}{7}\\z=\dfrac{3y}{7}\end{matrix}\right.\) thay x,z vào \(x^2+y^2-z^2=585\)
\(=>\left(\dfrac{5y}{7}\right)^2+y^2-\left(\dfrac{3y}{7}\right)^2=585=>y=\pm21\)
\(=>\left\{{}\begin{matrix}x=\dfrac{5.(\pm21)}{7}=\pm15\\z=\dfrac{3\left(\pm21\right)}{7}=\pm9\end{matrix}\right.\)
vậy (x,y,z)\(\in\left\{\left(15;21;9\right)\left(-15;-21;-9\right)\right\}\)
a)Đặt k, ta có:
x/2=k =>2k=x; y/3=k =>3k=y; z/5=k =>5k=z
thay x/2=k =>2k=x; y/3=k =>3k=y; z/5=k =>5k=z vào x2+y2+z2=152, tao có:
(2k)2+(3k)2+(5k)2=152
=>4xk2+9xk2+25xk2=152
=>k2x38=152
=>k2=4=>k=2 hoặc k=-2
Với k=2
=>x=4;y=6;z=10
Với k=-2
=>x=-4;y=-6;z=-10
Vậy (x=4;y=6;z=10) hoặc (x=-4;y=-6;z=-10)
b)Áp dụng dãy tỉ số bằng nhau, ta có :
x/4=y/7=z/9=(2x)/8=(2x-y)/8-7=2
=>x=8;y=14;z=18
Vậy........
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{2}=k\)
\(\Rightarrow x=3k;y=4k;z=2k\)
Mà \(x^3-y^3+z^3=-29\)
\(\Rightarrow\left(3k\right)^3-\left(4k\right)^3+\left(2k\right)^3=-29\)
\(\Rightarrow27k^3-64k^3+8k^3=-29\)
\(\Rightarrow-29k^3=-29\)
\(\Rightarrow k^3=1\)
\(\Rightarrow k=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\\z=2\end{matrix}\right.\)
#DatNe
Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+3y^2-z^2}{4+27-25}=\frac{22}{6}=\frac{11}{3}\)
\(\Rightarrow x^2=\frac{44}{3}\Rightarrow x=\frac{2\sqrt{11}}{\sqrt{3}}=\frac{2\sqrt{33}}{3}\)
\(\Rightarrow y^2=\frac{99}{3}=33\Rightarrow y=\sqrt{33}\)
\(\Rightarrow z^2=\frac{275}{3}\Rightarrow z=\frac{5\sqrt{33}}{3}\)
Bài 1:Thêm đề: Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)
a, \(\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có:
\(\left\{{}\begin{matrix}\dfrac{bk}{3bk+b}=\dfrac{bk}{b\left(3k+1\right)}=\dfrac{k}{3k+1}\\\dfrac{dk}{3dk+d}=\dfrac{dk}{d\left(3k+1\right)}=\dfrac{k}{3k+1}\end{matrix}\right.\)
\(\Rightarrow\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)
b, \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\)
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\Rightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}\dfrac{\left(ck-dk\right)^2}{\left(c-d\right)^2}=\dfrac{c^2k^2-2cdk^2+d^2k^2}{c^2-2cd+d^2}=\dfrac{k^2\left(c^2-2cd+d^2\right)}{c^2-2cd+d^2}=k^2\\\dfrac{ck.dk}{c.d}=k^2\end{matrix}\right.\) \(\Rightarrow\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\) Chúc bạn học tốt!!!Theo đề ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}\)
Ta có:\(\frac{x}{y}=\frac{9}{7}\Rightarrow\frac{x}{9}=\frac{y}{7}\left(1\right)\)
\(\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\left(2\right)\)
Từ (1) và (2) suy ra:\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau ta đc:
\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=-\frac{15}{5}=-3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{9}=-5\\\frac{y}{7}=-5\\\frac{z}{3}=-5\end{cases}\Rightarrow\hept{\begin{cases}x=-45\\y=-35\\z=-15\end{cases}}}\)
Ta có:
\(\frac{x}{y}=\frac{9}{7}\)=> \(\frac{x}{9}=\frac{y}{7}\)(1)
\(\frac{y}{z}=\frac{7}{3}\)=>\(\frac{y}{7}=\frac{z}{3}\)(2)
Từ (1) (2)
=>\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=-\frac{15}{5}=-3\)
=>\(\frac{x}{9}=-3\)=>x=-27
\(\frac{y}{7}=-3\)=>y=-21
\(\frac{z}{3}=-3\)=>z=-9
Vậy x=-27 ; y=-21 ; z=-9