K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2018

\(P=x^{2}+y^{2}+\frac{1}{(4-\frac{1}{x}-\frac{1}{y})^{2}}\geq x^{2}+1+\frac{1}{(3-\frac{1}{x})^{2}}=x^{2}+1+\frac{x^{2}}{(3x-1)^{2}}\) ( do \(y\geq 1)\)

\(x> \frac{1}{3}=>3x-1> 0 \)

Áp dụng bất đẳng thức Cô-si cho 2 số dương: 

\(x^{2}+\frac{x^{2}}{4(3x-1)^{2}}\geq 2\sqrt{x^{2}.\frac{x^{2}}{4(3x-1)^{2}}}=\frac{x^{2}}{3x-1}\)

Ta cm: \(\frac{x^{2}}{3x-1}\geq \frac{1}{2}<=>2x^{2}\geq 3x-1<=>(x-1)(2x-1)\geq 0\) đúng do \(\frac{1}{3}< x\leq \frac{1}{2}\)

\(1+\frac{3x^{2}}{4(3x-1)^{2}}=\frac{1}{4}+\frac{3}{4}(1+\frac{x^{2}}{(3x-1)^{2}})\geq \frac{1}{4}+\frac{3}{4}.2.\frac{x}{3x-1}\geq \frac{1}{4}+\frac{3}{4}.2=\frac{7}{4}\)

Do \(\frac{x}{3x-1}=\frac{1}{3}.\frac{3x}{3x-1}=\frac{1}{3}(1+\frac{1}{3x-1})\geq \frac{1}{3}(1+\frac{1}{\frac{3}{2}-1})=1\)

\(<=>y=1,x=\frac{1}{2}\)

Phù ~ THỞ PHÀO NHẸ NHÕM

16 tháng 9 2020

Ta có : \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{2^2}{2}=2\)

\(\Rightarrow4\left(x^2+y^2\right)\ge8\)

Lại có : \(xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}=\frac{4}{2^2}=1\)

Do đó : \(P=4\left(x^2+y^2\right)+\frac{1}{xy}\ge8+1=9\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)

4 tháng 2 2019

Áp dụng BĐT Minicopski ta có:

\(T=\sqrt{x^4+\frac{1}{x^4}}+\sqrt{y^2+\frac{1}{y^2}}\ge\sqrt{\left(x^2+y\right)^2+\left(\frac{1}{x^2}+\frac{1}{y}\right)^2}\)

\(\ge\sqrt{1^2+\left(\frac{4}{x^2+y}\right)^2}=\sqrt{1+\left(\frac{4}{1}\right)^2}=\sqrt{17}\)

Nên GTNN của T là \(\sqrt{17}\) khi \(\hept{\begin{cases}x=\sqrt{\frac{1}{2}}\\y=\frac{1}{2}\end{cases}}\)

NV
27 tháng 8 2020

\(\left(x+y\right)^2\Rightarrow4xy\Rightarrow\left(x+y\right)^3+\left(x+y\right)^2\ge\left(x+y\right)^3+4xy\ge2\)

\(\Rightarrow\left(x+y\right)^3+\left(x+y\right)^2-2\ge0\)

\(\Rightarrow\left(x+y-2\right)\left[\left(x+y+1\right)^2+1\right]\ge0\)

\(\Rightarrow x+y\ge2\) \(\Rightarrow x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\ge2\)

Ta có: \(A=3\left(x^2+y\right)^2-3x^2y^2-2\left(x^2+y^2\right)+1\)

\(A\ge3\left(x^2+y^2\right)^2-\frac{3}{4}\left(x^2+y^2\right)^2-2\left(x^2+y^2\right)+1=\frac{9}{4}\left(x^2+y^2\right)^2-2\left(x^2+y^2\right)+1\)

\(A\ge\frac{9}{4}\left(x^2+y^2-2\right)\left(x^2+y^2+\frac{10}{9}\right)+6\ge6\)

\(A_{min}=6\) khi \(x=y=1\)

15 tháng 2 2020

Dễ thấy P>0. Ta có: \(P^2-\frac{8}{9}=\frac{\left(x-y\right)^2\left(x^2+4xy+y^2\right)}{9\left(xy+1\right)^2}\)

Suy ra \(P\ge\frac{2\sqrt{2}}{3}\). Đẳng thức xảy ra khi \(x=y=\frac{1}{\sqrt{2}}\)

P/s: Phân tích trên chỉ đúng khi \(x^2+y^2=1\) :))