Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ab=-2\left(m^2+1\right)\left(m^4+1\right)< 0\) ;\(\forall m\)
\(\Rightarrow\) Hàm có 3 cực trị
Do hệ số \(a=m^2+1>0\) nên hàm trùng phương nhận \(x=0\) là cực đại
\(\Rightarrow y_{CĐ}=y\left(0\right)=3-m\)
\(\Rightarrow3-m=2\Rightarrow m=1\)
\(y'=\left(4m^2+4\right)x^3-\left(4m^4+4\right)x\)
\(y'=\left(4m^2+4\right)\left(x^3-x\right)\)
\(y'=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\\x=-1\end{matrix}\right.\)
\(y\left(\pm1\right)=-2m^4+m^2-m+2=0\Leftrightarrow m=0\)
\(y\left(0\right)=3-m=2\Leftrightarrow m=1\)
Lời giải:
1.
Để ĐTHS có cực đại và cực tiểu thì \(y'=3x^2+2x+m+2=0\) có hai nghiệm phân biệt
\(\Leftrightarrow \Delta'=1-3(m+2)>0\Leftrightarrow m<\frac{-5}{3}\)
2.
ĐTHS có hai cực trị nằm về hai phía trục tung nghĩa là PT \(y'=3x^2+2x+m+2=0\) có hai nghiệm $x_1,x_2$ trái dấu.
Theo định lý Viete thì \(x_1x_2=\frac{m+2}{3}<0\Leftrightarrow m<-2\)
3. Áp dụng định lý Viete:
Cực trị với hoành độ âm thì: \(\left\{\begin{matrix} x_1+x_2=\frac{-2}{3}<0\\ x_1x_2=\frac{m+2}{3}>0\end{matrix}\right.\Leftrightarrow m>-2\Rightarrow -2< m<\frac{-5}{3}\)
4. Để ĐTHS có cực tiểu tại $x=2$ thì PT \(y'=3x^2+2x+m+2=0\) nhận $x=2$ là nghiệm \(\Leftrightarrow m=-18\)
Thử lại bằng bảng biến thiên ta thấy đúng.
y'=3x2-2(m+2)x+1-m.
\(\Delta\)'=(m+2)2-3(1-m)=m2+7m+1>0 (để hàm số có hai điểm cực trị x1, x2).
|x1-x2|=2 \(\Leftrightarrow\) (x1+x2)2-4x1x2=4 \(\Leftrightarrow\) \(\left[\dfrac{2\left(m+2\right)}{3}\right]^2-4\dfrac{1-m}{3}=4\) \(\Rightarrow\) m=-8 (nhận) hoặc m=1 (nhận).
Để hàm số có 3 cực trị \(\Leftrightarrow m-2< 0\Rightarrow m< 2\)
\(y'=4x^3+4\left(m-2\right)x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{2-m}\\x=-\sqrt{2-m}\end{matrix}\right.\)
Gọi 3 cực trị lần lượt là A; B; C
\(\Rightarrow A\left(0;m^2-5m+6\right)\) ; \(B\left(-\sqrt{2-m};2-m\right)\) ; \(C\left(\sqrt{2-m};2-m\right)\)
Gọi I là trung điểm BC \(\Rightarrow I\left(0;2-m\right)\) ; \(BC=2\sqrt{2-m}\) ; \(AI=m^2-4m+4\)
Tam giác ABC đều khi và chỉ khi:
\(AI=\frac{\sqrt{3}}{2}BC\Leftrightarrow\left(2-m\right)^2=\sqrt{3\left(2-m\right)}\)
\(\Leftrightarrow\left(2-m\right)^3=3\Leftrightarrow m=2-\sqrt[3]{3}\)