Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: x khác 0
\(x+\dfrac{5}{x}>0\)
\(\Leftrightarrow x^2+5>0\) ( luôn đúng)
Vậy bất pt vô số nghiệm ( loại x = 0)
d)
\(\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2}{8}-\dfrac{x+3}{8}\)
\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2-x-3}{8}\)
\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{-5}{8}\)
\(\Leftrightarrow2x+2-4x+4>-15\)
\(\Leftrightarrow-2x>-21\)
\(\Leftrightarrow x< \dfrac{21}{2}\)
Vậy....................
a)\(x+\dfrac{5}{x}>0\left(ĐKXĐ:x\ne0\right)\)
\(\Leftrightarrow\dfrac{x^2+5}{x}>0\)
Mà \(x^2+5>0\)
\(\Rightarrow x>0\)
d)\(\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2}{8}-\dfrac{x+3}{8}\)
\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{2x-2}{12}>\dfrac{-5}{8}\)
\(\Leftrightarrow\dfrac{-x+3}{12}>\dfrac{-5}{8}\)
\(\Leftrightarrow-x+3>-\dfrac{15}{2}\)
\(\Leftrightarrow-x>-\dfrac{21}{2}\)
\(\Leftrightarrow x< \dfrac{21}{2}\)
Mk xin lỗi nha, câu c sai đề
c) (x+6)4 + (x+8)4 = 272
a: \(\Leftrightarrow5\left(x+1\right)\left(x-1\right)=2x-2-3x-3=-x-5\)
\(\Leftrightarrow5x^2-5+x+5=0\)
=>x(5x+1)=0
=>x=0 hoặc x=-1/5
b: \(\Leftrightarrow x^2-x-\left(2x-3\right)\left(x+1\right)=2x+3\)
\(\Leftrightarrow x^2-x-2x^2-2x+3x+3=2x+3\)
\(\Leftrightarrow-x^2+3=2x+3\)
=>-x(x+2)=0
=>x=0(nhận) hoặc x=-2(nhận)
c: \(\Leftrightarrow4x^2-25=0\)
=>(2x-5)(2x+5)=0
=>x=5/2 hoặc x=-5/2
Hằng đẳng thức mà tương ạ! :v
a, \(\dfrac{8x^3-\dfrac{1}{125}y^3}{4x^2+\dfrac{1}{25}y^2+\dfrac{2}{5}xy}\)
\(=\dfrac{\left(2x-\dfrac{1}{5}y\right)\left(4x^2+\dfrac{2}{5}xy+\dfrac{1}{25}y^2\right)}{4x^2+\dfrac{1}{25}y^2+\dfrac{2}{5}xy}=2x-\dfrac{1}{5}y\)
b, \(\dfrac{x^3-6x^2+2x+15}{x-5}\)
\(=\dfrac{x^3-5x^2-x^2+5x-3x+15}{x-5}\)
\(=\dfrac{x^2\left(x-5\right)-x\left(x-5\right)-3\left(x-5\right)}{x-5}\)
\(=\dfrac{\left(x-5\right)\left(x^2-x-3\right)}{\left(x-5\right)}=x^2-x-3\)
Rồi ạ :v!
a: \(=\dfrac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}:\left(\dfrac{1}{x+1}+\dfrac{x}{x-1}+\dfrac{2}{\left(x-1\right)\left(x+1\right)}\right)\)
\(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}:\dfrac{x-1+x^2+x+2}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{x^2+2x+1}=\dfrac{4x}{x^2+2x+1}\)
b: \(=\dfrac{x+2}{-\left(x-2\right)}\cdot\dfrac{\left(x-2\right)^2}{4x^2}\cdot\left(\dfrac{2}{2-x}-\dfrac{4}{\left(x+2\right)\left(x^2-2x+4\right)}\cdot\dfrac{x^2-2x+4}{2-x}\right)\)
\(=\dfrac{-\left(x+2\right)\left(x-2\right)}{4x^2}\cdot\left(\dfrac{2}{2-x}-\dfrac{4}{\left(x+2\right)\left(2-x\right)}\right)\)
\(=\dfrac{-\left(x+2\right)\left(x-2\right)}{4x^2}\cdot\dfrac{2x+4-4}{\left(2-x\right)\left(x+2\right)}\)
\(=\dfrac{2x}{4x^2}=\dfrac{1}{2x}\)
a: \(=\dfrac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{2\left(x-1\right)\left(x+1\right)}{5}\cdot2\)
\(=\dfrac{10}{5}\cdot2=4\)
b: \(=\dfrac{x}{x-3}-\dfrac{x\left(x+3\right)}{2x+3}\cdot\dfrac{x^2+6x+9-x^2}{x\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x}{x-3}-\dfrac{3}{x-3}=1\)
2: \(\Leftrightarrow\left(x-4\right)\left(x+1\right)+\left(x+4\right)\left(x-1\right)=2\left(x-1\right)\left(x+1\right)\)
=>x^2-3x-4+x^2+3x-4=2x^2-2
=>2x^2-8=2x^2-2(loại)
3: \(\Leftrightarrow\left(x^2-x\right)\left(x-3\right)+x^2\left(x+3\right)=-7x^2+3x\)
=>x^3-3x^2-x^2+3x+x^3+3x^2+7x^2-3x=0
=>2x^3+6x^2=0
=>2x^2(x+3)=0
=>x=0(nhận) hoặc x=-3(loại)
\(x^3+\dfrac{3}{4}x+\dfrac{3}{2}x^2+\dfrac{1}{8}=\dfrac{1}{64}\)
\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{1}{4}\)
\(\Leftrightarrow x=-\dfrac{1}{4}\)