Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) 2x ( x - 5 ) - x ( 3 + 2x ) = 26
2x2 - 10x - 3x - 2x2 = 26
- 13x = 26
x = 26 : ( -13 )
x = -2
b) 49x2 - 81 = 0
( 7x - 9 )( 7x + 9 ) = 0
Th1 :
7x - 9 = 0
7x = 9
x = \(\frac{9}{7}\)
Th2
7x + 9 = 0
7x = -9
x = \(-\frac{9}{7}\)
Vay x = \(\frac{9}{7}\) hoac x = \(-\frac{9}{7}\)
a) \(x^3\)+\(x^2\)=36
\(\Leftrightarrow\)\(x^3\)+\(x^2\)\(-36=0\)
\(\Leftrightarrow\)\(x^3\)\(-3x^2\)\(+4x^2\)\(-12x\)\(+12x-36=0\)
\(\Leftrightarrow\)\(x^2\left(x-3\right)+4x\left(x-3\right)+12\left(x-3\right)=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(x^2+4x+12\right)=0\)
Suy ra: \(x-3=0\) hoặc \(x^2+4x+12=0\)
- \(x-3=0\) \(\Leftrightarrow\) \(x=3\)
- \(x^2+4x+12=0\) (phương trình vô nghiệm)
Vậy \(x=3\)
a. \(\left(3x-5\right)^2-\left(x+1\right)^2=0\Leftrightarrow\left(3x-5+x+1\right)\left(3x-5-x-1\right)=0\Leftrightarrow\left(4x-4\right)\left(2x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}4x-4=0\\2x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy ...
b. \(\left(5x-4\right)^2-49x^2=0\Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy ...
c. \(4x^3-36x=0\Leftrightarrow4x\left(x^2-9\right)=0\Leftrightarrow4x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}4x=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
Vậy ...
d. \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\Leftrightarrow\left(2x+3\right)\left(x-1\right)-\left(2x-3\right)\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(2x+3-2x+3\right)=0\Leftrightarrow6\left(x-1\right)=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy ...
a,49x2-1=0
\(\Leftrightarrow\left(7x\right)^2-1^2=0\)\(\Leftrightarrow\left(7x-1\right)\left(7x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}7x-1=0\\7x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}7x=1\\7x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{7}\\x=\dfrac{-1}{7}\end{matrix}\right.\)
b,(2x-1)2-(4x+1)(x-3)= -3
\(\Leftrightarrow\left[\left(2x\right)^2-2x+1\right]-\left(4x^2-12x+x-3\right)=0\)
\(\Leftrightarrow4x^2-2x+1-4x^2+12x-x+3=0\)
\(\Leftrightarrow9x+4=0\Leftrightarrow9x=-4\Leftrightarrow x=\dfrac{-4}{9}\)
1, 2x\(^2\) -8=0
2x\(^2\) =8
x\(^2\) =4 \(\Rightarrow\) \(\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
2, 3x\(^2\) -75=0
3x\(^2\) = 75
x\(^2\) = 25 \(\Rightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
3, (x+3)\(^2\) =4
\(\Rightarrow\left[{}\begin{matrix}x+3=2\\x+3=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-5\end{matrix}\right.\)
4, (x-1)\(^2\)-81=0
(x-1)\(^2\) =81 \(\Rightarrow\left[{}\begin{matrix}x-1=9\\x-1=-9\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=10\\x=-8\end{matrix}\right.\)
5, x\(^2\) +4x-21=0
x(x+4)=21
\(\Rightarrow\) \(\left\{{}\begin{matrix}x=3\\x+4=7\end{matrix}\right.\) \(\Rightarrow x=3\)
6, x\(^3\) =25x
x(x\(^2\) - 5\(^2\) )=0
x(x-5)(x+5)=0
\(\Rightarrow\left\{{}\begin{matrix}x=0\\x+5=0\\x-5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\x=-5\\x=5\end{matrix}\right.\)
8, x\(^3\) - 49x=0
x(x-7)(x+7)=0
\(\Rightarrow\left\{{}\begin{matrix}x=0\\x-7=0\\x+7=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\x=7\\x=-7\end{matrix}\right.\)
1)
\(2x^2-8=0\\ \Leftrightarrow2\left(x^2-4\right)=0\\ \Leftrightarrow2\left(x-2\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy...
2)
\(3x^2-75=0\\\Leftrightarrow 3\left(x^2-25\right)=0\\ \Leftrightarrow3\left(x-5\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
Vậy...
3)
\(\left(x+3\right)^2=4\\ \Leftrightarrow\left(x+3\right)^2-4=0\\ \Leftrightarrow\left(x+3-2\right)\left(x+3+2\right)=0\\\Leftrightarrow \left(x+1\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-5\end{matrix}\right.\)
Vậy...
4)
\(\left(x-1\right)^2-81=0\\ \Leftrightarrow\left(x-1-9\right)\left(x-1+9\right)=0\\\Leftrightarrow \left(x-10\right)\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-10=0\\x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-8\end{matrix}\right.\)
Vậy...
c) 49x2+14x+1=0
=>(7x+1)2=0
= > 7x+1=0
=> 7x=-1
=> x=-\(\dfrac{1}{7}\)
\(4x^3-36x=0\)
\(x.\left[\left(2x\right)^2-6^2\right]=0\)
\(x.\left(2x-6\right)\left(2x+6\right)=0\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=0\\2x-6=0\end{cases}}\)hoặc \(2x+6=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)hoặc \(x=-3\)
KL:...............................................
\(49x_1^2-25\left(x_2+1\right)^2=0\)
\(\Rightarrow\left(7x_1\right)^2-25\left(x_2+1\right)^2=0\)
Xét \(\left(7x_1\right)^2\ge0\) ; \(25\left(x_2+1\right)^2\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(7x_1\right)^2=0\\25\left(x_2+1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x_1=0\\x_2=-1\end{matrix}\right.\)
b, \(15\left(x+3\right)+20x\left(x+8\right)=15x+45+20x^2+160x\)
\(=20x^2+175x+45=...\)
c, \(6\left(x-9\right)-3x\left(y-x\right)=6x-54-3xy+3x^2\)
d, \(2xy+10x^2-x\) không phân tích được nữa nhé
e, \(4ab^2-28a+16b\)không phân tích được nữa nhé
g, \(a\left(a+b\right)=ab\left(a+b\right)< =>\left(a+b\right)\left(a-ab\right)=0< =>\left(a+b\right)a\left(1-b\right)=0\)
h, \(30a^2+6a-6=\left(\sqrt{30}a\right)^2+2.\sqrt{30}.\frac{3}{\sqrt{30}}+\frac{3}{10}-\frac{63}{10}\)
\(=\left(\sqrt{30}a+\frac{3}{\sqrt{30}}\right)^2-\sqrt{\frac{63}{10}}^2=\left(\sqrt{30}a+\frac{3}{\sqrt{30}}-\sqrt{\frac{63}{10}}\right)\left(\sqrt{30}a+\frac{3}{\sqrt{30}}+\sqrt{\frac{63}{10}}\right)\)
\(x\left(x^2-49\right)=0\\ x\left(x-7\right)\left(x+7\right)=0\\ \left\{{}\begin{matrix}x=0\\x-7=0\\x+7=0\end{matrix}\right.\\ \left\{{}\begin{matrix}x=0\\x=7\\x=\left(-7\right)\end{matrix}\right.\)