Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x3 - 3xy2 = 10
<=> (x3 - 3xy2)2 = 100
<=> x6 - 6x4y2 + 9x2y4 = 100 (1)
y3 - 3x2y = 30
<=> (y3 - 3x2y)2 = 900
<=> y6 - 6x2y4 + 9x4y2 = 900 (2)
Từ (1) và (2) cộng vế theo vế:
x6 - 6x4y2 + 9x2y4 + y6 - 6x2y4 + 9x4y2 = 100 + 900
<=> x6 + 3x4y2 + 3x2y4 + y6 = 1000
<=> (x2 + y2)3 = 103
<=> x2 + y2 = 10
Vậy P = x2 + y2 = 10
\(x^3-3xy^2=10\Leftrightarrow\left(x^3-3xy^2\right)^2=100\Leftrightarrow x^6-6x^4y^2+9x^2y^4=100\)
\(y^3-3x^2y=30\Leftrightarrow\left(y^3-3x^2y\right)^2=900\Leftrightarrow y^6-6x^2y^4+9x^4y^2=900\)
cộng vế theo vế ta có: \(x^6+3x^4y^2+3x^2y^4+y^6=1000\Leftrightarrow\left(x^2+y^2\right)^2=100\Leftrightarrow x^2+y^2=10\)
vậy P=10
\(A=x^2-2xy+y^2=\left(x-y\right)^2=\left(-3\right)^2=9\)
\(B=x^2+y^2=\left(x-y\right)^2+2xy=9+10.2=29\)
\(C=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=\left(-3\right)^3=-27\)
\(D=x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=\left(-3\right)\left[x^2-2xy+y^2+3xy\right]=\left(-3\right)\left(\left(-3\right)^2.3.10\right)=-3.270=-810\)
a)x3 + 3x2 + 3x
=x3 + 3x2 + 3x+1-1
=(x+1)3-1.Với x=99
=>A=(99+1)3-1=1003-1
=1 000 000 -1 = 999 999