K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2022

`@x^3+3x^2=x(x^2+3)`

`@2-x-2=(2-2)-x=-x`

`@4x-1-7x-1=(4x-7x)-(1+1)=-3x-2`

`@`\(\dfrac{x+3}{x^2-1}-\dfrac{1}{x^2+x}\)

\(=\dfrac{x(x+3)-x+1}{x(x-1)(x+1)}\)

\(=\dfrac{x^2+3x-x+1}{x(x-1)(x+1)}\)

\(=\dfrac{(x+1)^2}{x(x-1)(x+1)}=\dfrac{x+1}{x^2-x}\)

a: \(\Leftrightarrow x^2-25-x^2-6x-9+3x^2-12x+12=x^2+2x+1-x^2+16+3x^2\)

\(\Leftrightarrow3x^2-18x-22=3x^2+2x+17\)

=>-18x-22=2x+17

=>-20x=39

hay x=-39/20

b: \(\Leftrightarrow2\left(16x^2-8x+1\right)-9x^2+4=7x^2+13x-2+4x^2+4x+1-4x^2-7\)

\(\Leftrightarrow32x^2-16x+2-9x^2+4=7x^2+17x-8\)

\(\Leftrightarrow23x^2-16x+6-7x^2-17x+8=0\)

\(\Leftrightarrow16x^2-33x+14=0\)

\(\text{Δ}=\left(-33\right)^2-4\cdot16\cdot14=193>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{33-\sqrt{193}}{32}\\x_2=\dfrac{33+\sqrt{193}}{32}\end{matrix}\right.\)

15 tháng 7 2021

a) \(\left(3x-2\right)\left(3x-1\right)=\left(3x+1\right)^2\)

<=> \(9x^2-9x+2=9x^2+6x+1\)

<=>  \(15x=1\) <=> \(x=\frac{1}{15}\)

b) \(\left(4x-1\right)\left(x+1\right)=\left(2x-3\right)^2\)

<=> \(4x^2+3x-1=4x^2-12x+9\)

<=> \(15x^2=10\) <=> \(x=\frac{2}{3}\)

c) \(\left(5x+1\right)^2=\left(7x-3\right)\left(7x+2\right)\) <=> \(25x^2+10x+1=49x^2-7x-6\)

<=> \(24x^2-17x-7=0\) <=> \(24x^2-24x+7x-7=0\)

<=> \(\left(24x+7\right)\left(x-1\right)=0\) <=> \(\orbr{\begin{cases}x=-\frac{7}{24}\\x=1\end{cases}}\)

15 tháng 7 2021

d) (4 - 3x)(4 + 3x) = (9x - 3)(1 - x)

<=> 16 - 9x2 = 12x - 9x2 - 3

<=> 12x = 19

<=> x = 19/12

e) x(x + 1)(x + 2)(x + 3) = 24

<=> (x2 + 3x)(x2 + 3x + 2) = 24

<=> (x2 + 3x)2  + 2(x2 + 3x) - 24 = 0

<=> (x2 + 3x)2 + 6(x2 + 3x) - 4(x2 + 3x) - 24 = 0

<=> (x2 + 3x + 6)(x2 + 3x - 4) = 0

<=> \(\orbr{\begin{cases}x^2+3x+6=0\\x^2+3x-4=0\end{cases}}\)

<=> \(\orbr{\begin{cases}\left(x+\frac{3}{2}\right)^2+\frac{15}{4}=0\left(vn\right)\\\left(x+4\right)\left(x-1\right)=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-4\\x=1\end{cases}}\)

g) (7x - 2)2 = (7x - 3)(7x + 2)

<=> 49x2 - 28x + 4 = 49x2 - 7x - 6

<=> 21x = 10 <=> x = 10/21

18 tháng 7 2017

a) \(\left(4x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=\left(7x-1\right)\left(x+2\right)+\left(2x+1\right)^2-\left(4x^2+7\right)\)(1)

\(\Leftrightarrow\left(16x^2-8x+1\right)-\left(9x^2-4\right)=\left(7x^2+14x-x-2\right)+\left(4x^2+4x+1\right)-\left(4x^2+7\right)\)

\(\Leftrightarrow16x^2-8x+1-9x^2+4=7x^2+13x-2+4x^2+4x+1-4x^2-7\)

\(\Leftrightarrow7x^2-8x+5=7x^2+17x-8\)

\(\Leftrightarrow7x^2-8x-7x^2-17x=-8-5\)

\(\Leftrightarrow-25x=-13\)

\(\Leftrightarrow x=\dfrac{13}{25}\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{13}{25}\right\}\)

18 tháng 7 2017

gắp cái gì

1 tháng 1 2018

a)\(\dfrac{27-x^3}{5x+5}:\dfrac{2x-6}{3x+3}\)

\(=\dfrac{\left(3-x\right)\left(9+3x+x^2\right)}{5\left(x+1\right)}:\dfrac{2\left(x-3\right)}{3\left(x+1\right)}\)

\(=\dfrac{\left(3-x\right)\left(9+3x+x^2\right)3\left(x+1\right)}{5\left(x+1\right)2\left(x-3\right)}\)

\(=\dfrac{-\left(x-3\right)\left(9+3x+x^2\right)3\left(x+1\right)}{5\left(x+1\right)2\left(x-3\right)}\)

\(=\dfrac{-\left(9+3x+x^2\right)3}{10}\)

b)\(4x^2-16:\dfrac{3x+6}{7x-2}\)

\(=4\left(x^2-4\right):\dfrac{3\left(x+2\right)}{7x-2}\)

\(=4\left(x-2\right)\left(x+2\right)\cdot\dfrac{7x-2}{3\left(x+2\right)}\)

\(=\dfrac{4\left(x-2\right)\left(x+2\right)\left(7x-2\right)}{3\left(x+2\right)}\)

\(=\dfrac{4\left(x-2\right)\left(7x-2\right)}{3}\)

c)\(\dfrac{3x^3+3}{x-1}:x^2-x+1\)

\(=\dfrac{3\left(x^3+1\right)}{x-1}:x^2-x+1\)

\(=\dfrac{3\left(x+1\right)\left(x^2-x+1\right)}{x-1}\cdot\dfrac{1}{x^2-x+1}\)

\(=\dfrac{3\left(x+1\right)}{x-1}\)

d)\(\dfrac{4x+6y}{x-1}:\dfrac{4x^2+12xy+9y^2}{1-x^3}\)

\(=\dfrac{2\left(2x+3y\right)}{x-1}\cdot\dfrac{\left(1-x\right)\left(1+x+x^2\right)}{\left(2x+3y\right)^2}\)

\(=\dfrac{2\left(2x+3y\right)}{x-1}\cdot\dfrac{-\left(x-1\right)\left(1+x+x^2\right)}{\left(2x+3y\right)^2}\)

\(=\dfrac{-2\left(1+x+x^2\right)}{2x+3y}\)

ngoamthanghoa

1 tháng 1 2018

a) \(\dfrac{27-x^3}{5x+5}:\dfrac{2x-6}{3x+3}\)

\(=\dfrac{27-x^3}{5x+5}.\dfrac{3x+3}{2x-6}\)

\(=\dfrac{\left(3-x\right)\left(9+3x+x^2\right)}{5\left(x+1\right)}.\dfrac{3\left(x+1\right)}{2\left(x-3\right)}\)

\(=-\dfrac{3\left(x-3\right)\left(x^2+3x+9\right)\left(x+1\right)}{10\left(x+1\right)\left(x-3\right)}\)

\(=-\dfrac{3\left(x^2+3x+9\right)}{10}\)

b) \(4x^2-16:\dfrac{3x+6}{7x-2}\)

\(=4x^2-16.\dfrac{7x-2}{3x+6}\)

\(=\dfrac{4\left(x^2-4\right)\left(7x-2\right)}{3\left(x+2\right)}\)

\(=\dfrac{4\left(x-2\right)\left(x+2\right)\left(7x-2\right)}{3\left(x+2\right)}\)

\(=\dfrac{4\left(x-2\right)\left(7x-2\right)}{3}\)

c) \(\dfrac{3x^3+3}{x-1}:x^2-x+1\)

\(=\dfrac{3x^3+3}{x-1}.\dfrac{1}{x^2-x+1}\)

\(=\dfrac{3\left(x^3+1\right)}{\left(x-1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{3\left(x+1\right)\left(x^2-x+1\right)}{\left(x-1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{3\left(x+1\right)}{x-1}\)

d) \(\dfrac{4x+6y}{x-1}:\dfrac{4x^2+12xy+9y^2}{1-x^3}\)

\(=\dfrac{4x+6y}{x-1}.\dfrac{1-x^3}{4x^2+12xy+9y^2}\)

\(=\dfrac{2\left(2x+3y\right)\left(1-x\right)\left(1+x+x^2\right)}{\left(x-1\right)\left(2x+3y\right)^2}\)

\(=-\dfrac{2\left(2x+3y\right)\left(x-1\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(2x+3y\right)^2}\)

\(=-\dfrac{2\left(x^2+x+1\right)}{2x+3y}\)

14 tháng 1 2018

\(a,\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2-1\right)\)

\(\Leftrightarrow\left(3x-2\right)\left(3x+2\right)\left(x+1\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(3x-2-x+1\right)=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\x+1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=-1\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{-\dfrac{2}{3};-1;\dfrac{1}{2}\right\}\)

\(b,\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)

\(\Leftrightarrow\left(1-x\right)^2-\left(1-x^2\right)=\left(1-x\right)\left(x+3\right)\)

\(\Leftrightarrow\left(1-x\right)^2-\left(1-x\right)\left(1+x\right)-\left(1-x\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(1-x\right)\left(1-x-1-x-x-3\right)=0\)

\(\Leftrightarrow\left(1-x\right)\left(-3x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}1-x=0\\-3x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{1;-1\right\}\)

\(c,\left(x^2-1\right)\left(x+2\right)\left(x-3\right)=\left(x-1\right)\left(x^2-4\right)\left(x+5\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-3\right)-\left(x-1\right)\left(x+2\right)\left(x-2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+1\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-2x-3-x^2-3x+10\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(-5x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\-5x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=\dfrac{7}{5}\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{1;-2;\dfrac{7}{5}\right\}\)

\(d,x^4+x^3+x+1=0\)

\(\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x^3+1=0\end{matrix}\right.\)

\(\Leftrightarrow x=-1\)

Vậy phương trình có nghiệm duy nhất x = -1

\(e,x^3-7x+6=0\)

\(\Leftrightarrow x^3-4x-3x+6=0\)

\(\Leftrightarrow x\left(x^2-4\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+3x-x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\\x=1\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{1;2;-3\right\}\)

\(f,x^4-4x^3+12x-9=0\)

\(\Leftrightarrow\left(x^4-9\right)-\left(4x^3-12x\right)=0\)

\(\Leftrightarrow\left(x^2-3\right)\left(x^2+3\right)-4x\left(x^2+3\right)=0\)

\(\Leftrightarrow\left(x^2+3\right)\left(x^2-3-4x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+3>0\forall x\\x^2-4x-3>0\forall x\end{matrix}\right.\)

Vậy phương trình vô nghiệm

\(g,x^5-5x^3+4x=0\)

\(\Leftrightarrow x\left(x^4-5x^2+4\right)=0\)

\(\Leftrightarrow x\left(x^4-4x^2-x^2+4\right)=0\)

\(\Leftrightarrow x\left(x^2-4\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\\x-1=0\\x+1=0\end{matrix}\right.\) hoặc x = 0

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=1\\x=-1\end{matrix}\right.\) hoặc x =0

Vậy tập nghiệm của pt \(S=\left\{0;1;-1;2;-2\right\}\)

\(h,x^4-4x^3+3x^2+4x-4=0\)

\(\Leftrightarrow x^4-4x^3+4x^2-x^2+4x-4=0\)

\(\Leftrightarrow\left(x^4-x^2\right)-\left(4x^3-4x\right)+\left(4x^2-4\right)=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-4x\left(x^2-1\right)+4\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=2\end{matrix}\right.\)

Vậy tập nghiệm của pt là \(S=\left\{1;-1;2\right\}\)