Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x2+2x)2+9x2+18x+20
=(x2+2x)2+9(x2+2x)+20
Đặt t=x2+2x ta được:
t2+9t+20=t2+4t+5t+20
=t.(t+4)+5.(t+4)
=(t+4)(t+5)
thay t=x2+2x ta được:
(x2+2x+4)(x2+2x+5)
Vậy (x2+2x)2+9x2+18x+20=(x2+2x+4)(x2+2x+5)
b) \(x^3-4x^2-12x+27=\left(x^3+27\right)-\left(4x^2+12x\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)-4x\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-3x+9-4x\right)\)
\(=\left(x+3\right)\left(x^2-7x+9\right)\)
d) \(x^{16}-1=\left(x^4-1\right)\left(x^4+1\right)=\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\)
a/ \(=7x^2-7x-x+1=7x\left(x-1\right)-\left(x-1\right)=\left(7x-1\right)\left(x-1\right)\)
b/ \(=\left(x^2+2x\right)^2+4\left(x^2+2x\right)+5\left(x^2+2x\right)+20\)
\(=\left(x^2+2x\right)\left(x^2+2x+4\right)+5\left(x^2+2x+4\right)\)
\(=\left(x^2+2x+5\right)\left(x^2+2x+4\right)\)
c/ \(=\left(2x-1\right)^2-\left(2x-1\right)y+2\left(2x-1\right)y-2y^2\)
\(=\left(2x-1\right)\left(2x-y-1\right)+2y\left(2x-y-1\right)\)
\(=\left(2x+2y-1\right)\left(2x-y-1\right)\)
d/ \(=x^4-9x^2-4x^2+36=x^2\left(x^2-9\right)-4\left(x^2-9\right)\)
\(=\left(x^2-4\right)\left(x^2-9\right)=\left(x-2\right)\left(x+2\right)\left(x-3\right)\left(x+3\right)\)
(x^2 + 2x)^2 - 9x^2 - 18x + 20 = (x^2 + 2x)^2 - 9(x^2 + 2x) + 20
Đặt x^2 + 2x = a ta có:
a^2 - 9a + 20 = (a - 4)(a - 5)
Thay ngược lại ta có: (x^2 + 2x - 4)(x^2 + 2x - 5)
e) (x2+2x)2+9x2+18x+20=(x2+2x+4)(x2+2x+5)(x2+2x)2+9x2+18x+20=(x2+2x+4)(x2+2x+5)