Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho phương trình: x2−(m+4)x+4m=0
Tìm m để phương trình có 2 nghiệm phân biệt thỏa mãn x12 + (m+4)x2=0
\(\Delta=\left(3m-1\right)^2-4\left(2m^2-m\right)=m^2-2m+1=\left(m-1\right)^2\)
Để pt có 2 nghiệm pb <=> delta >0 <=> m khác 1
Theo hệ thức vi ét ta có:
\(\hept{\begin{cases}x_1+x_2=3m-1\\x_1.x_2=2m^2-m\end{cases}}\)
Vì |x1+x2|=2
\(\Rightarrow x_1^2+x_2^2-2x_1.x_2=4\Rightarrow\left(x_1+x_2\right)^2-4x_1.x_2=4\)
\(\Rightarrow\left(3m-1\right)^2-4\left(2m^2-m\right)=4\Rightarrow\left(m-1\right)^2=4\Rightarrow\orbr{\begin{cases}m=3\\m=-1\left(L\right)\end{cases}}\)
Vậy m=3 thì thỏa mãn
Theo vi-ét ta được: \(\hept{\begin{cases}x_1+x_2=\frac{3m-1}{1}=3m-1\\x_1x_2=\frac{2m^2-m}{1}=2m^2-m\end{cases}}\)(1)
Theo đề: \(\left|x_1-x_2\right|=2\Leftrightarrow\left(x_1-x_2\right)^2=4\Leftrightarrow x_1^2+x_2^2-2x_1x_2=4\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)(2)
Thay (1) vào (2) ta được pt:
\(\left(3m-1\right)^2-4.\left(2m^2-m\right)=4\)
\(\Rightarrow9m^2-6m+1-8m^2+4m-4=0\)
\(\Rightarrow m^2-2m-3=0\)
\(\Rightarrow\left(m-3\right)\left(m+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}m=3\\m=-1\end{cases}}\)
Với m = 3 suy ra hệ \(\hept{\begin{cases}x_1+x_2=8\\x_1x_2=15\end{cases}}\). Giải hệ ta được \(\hept{\begin{cases}x_1=5\\x_2=3\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=3\\x_2=5\end{cases}}\)
Với m = -1 suy ra hệ \(\hept{\begin{cases}x_1+x_2=-4\\x_1x_2=3\end{cases}}\). Giải hệ ta được \(\hept{\begin{cases}x_1=-1\\x_2=-3\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=-3\\x_2=-1\end{cases}}\)
Vậy (x1;x2) = (5;3) , (3;5) , (-1;-3) , (-3;-1)
đk đenta >0
tim x1 va x2 roi thay vao x21+ x22=10 la tinh dc m
đenta=2^2-4*(-m^2+2m)
=>x1=.....;x2=..........................
thay vô x12-x22=10 giải ra m
a = 1; b = 1; c = m - 5
\(\Delta=b^2-4ac\)
\(=1^2-4.1.\left(m-5\right)\)
\(=1-4m+20\)
\(=21-4m\)
Để pt (1) có 2 nghiệm phân biệt <=> \(\Delta>0\)
<=> \(21-4m>0\)
<=> \(m>\frac{21}{4}\)
Vậy với m > 21/4 thì pt (1) có 2 nghiệm phân biệt