Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, x3-3x2+3x-1=0 b, (2x-5)2-(x+2)2=0 c, x2-x=3x-3
<=>x3-x2-2x2+2x+x-1=0 <=>(2x-5-x-2)(2x-5+x+2)=0 <=>x2-x-3x+3=0
<=>(x3-x2)-(2x2-2x)+(x-1)=0 <=>(x-7)(3x-3)=0 <=>x2-4x+3=0
<=>x2(x-1)-2x(x-1)+(x-1)=0 <=>x-7=0 hoặc 3x-3=0 <=>x2-x-3x+3=0
<=>(x-1)(x2-2x+1)=0 1, x-7=0 2, 3x-3=0 <=>(x2-x)-(3x-3)=0
<=>(x-1)(x-1)2=0 <=>x=7 <=>x=1 <=>x(x-1)-3(x-1)=0
<=>x-1=0 Vậy TN của PT là S={7;1} <=>(x-1)(x-3)=0
<=>x=1 <=>x-1=0 hoặc x-3=0
Vậy tập nghiệm của phương trình là S={1} 1, x-1=0 2, x-3=0
<=>x=1 <=>x=3
Vậy TN của PT là S={1;3}
\(a,\left(x+4\right)^2-x\left(x-5\right)=19\)
\(x^2+8x+16-x^2+5x=19\)
\(8x+5x=19-16\)
\(13x=3\)
\(x=\frac{3}{13}\)
\(b,x^2+3x-10=0\)
\(\Rightarrow x^2+5x-2x-10=0\)
\(\Rightarrow x\left(x+5\right)-2\left(x+5\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}}\)
\(a,\left(x+4\right)^2-x\left(x-5\right)=19\)
\(x^2+8x+16-x^2+5x=19\)
\(8x+5x=19-16\)
\(13x=3\)
\(x=\frac{3}{13}\)
\(b,x^2+3x-10=0\)
\(\Rightarrow x^2+5x-2x-10=0\)
\(\Rightarrow x\left(x+5\right)-2\left(x+5\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}}\)
a) (x+4)2 - x(x-5) = 19
x2+2.x.4+42 - x2 +5x = 19
8x +16 +5x =19
13x +16 =19
13x = 19-16=3
=> x=3:13=\(\frac{3}{13}\)
b) x2 +3x -10 =0
x(x+3) -10 =0
x(x+3) =10
=> x=2
chúc bn học tốt nha ^^ t chi mk nhé <3
a.(x+2)2-x(x+2)=0
\(\Leftrightarrow\)(x+2)(x-2-x)=0
\(\Leftrightarrow\)(x+2)*2=0
\(\Leftrightarrow\)x+2=0
\(\Leftrightarrow\)x=-2
vay s={-2}
b.\(\frac{2x+7}{3}\)-\(\frac{x-2}{4}\)=2
\(\Leftrightarrow\)\(\frac{4\left(2x+7\right)}{12}\)+\(\frac{-3\left(x-2\right)}{12}\)=\(\frac{24}{12}\)
\(\Leftrightarrow\)8x+28-3x+6=24
\(\Leftrightarrow\)5x=-10
\(\Leftrightarrow\)x=-2
vay s={-2}
c.|x+5|=3x+1
neu x+5\(\ge\)0 thi |x+5|=x+5
\(\Leftrightarrow\)x\(\ge\)-5
ta co phuong trinh
x+5=3x+1
\(\Leftrightarrow\)-2x=-4
\(\Leftrightarrow\)x=2( thoa man dieu kien x\(\ge\)-5)
neu x+5<0 thi |x+5|=5-x
\(\Leftrightarrow\)x<-5
ta co phuong trinh
5-x=3x+1
\(\Leftrightarrow\)-4x=-4
\(\Leftrightarrow\)x=1 (k thoa man dieu kien x<5)
vay s={2}
chuc bn hoc tot
đặt \(t=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
phương trình đã cho trở thành : \(t^2+t-12=0\)
phương trình này có nghiệm dương t=3. từ đó suy ra 2 nghiệm đã cho là x=1 , x=2
(x2 + x + 1)2 + (x2 + x + 1) - 12 = 0
Đặt x2 + x + 1 = t
<=> t2 + t - 12 = 0
<=> t2 + 4t - 3t - 12 = 0
<=> (t + 4)(t - 3) = 0
<=> (x2 + x + 1 + 4)(x2 + x + 1 - 3) = 0
<=> [(x2 + x + 1/4) + 19/4](x2 + 2x - x - 2) = 0
<=> [(x2 + 1/2)2 + 19/4](x + 2)(x - 1) = 0
<=> (x + 2)(x - 1) = 0
<=> \(\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)
Vậy S = {-2; 1}
a) Ta có: \(\left(x-1\right)\left(3x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\cdot3\cdot\left(x-2\right)=0\)
Vì 3≠0
nên \(\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy: x∈{1;2}
b) Ta có: \(\left(2x+5\right)\left(1-3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+5=0\\1-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-5\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-5}{2}\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{-5}{2};\frac{1}{3}\right\}\)
c) Ta có: \(\left(x+1\right)\left(2x-3\right)\left(3x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x-3=0\\3x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=3\\3x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{3}{2}\\x=\frac{5}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{-1;\frac{3}{2};\frac{5}{3}\right\}\)
d) Ta có: \(6\left(x-2\right)\left(x-4\right)\left(1-7x\right)=0\)
Vì 6≠0
nên \(\left[{}\begin{matrix}x-2=0\\x-4=0\\1-7x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\\7x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\\x=\frac{1}{7}\end{matrix}\right.\)
Vậy: \(x\in\left\{2;4;\frac{1}{7}\right\}\)
e) Ta có: \(\left(x+1\right)^2\cdot\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+1\right)^2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)
Vậy: x∈{-1;-2}
f) Ta có: \(\left(3x-2\right)^2\cdot\left(x+1\right)\cdot\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(3x-2\right)^2=0\\x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x=-1\\x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\x=-1\\x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=-1\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{2}{3};-1;2\right\}\)
g) Ta có: \(\left(5-x\right)^2\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(5-x\right)^2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5-x=0\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{5;\frac{1}{3}\right\}\)
h) Ta có: \(\left(14-2x\right)^2\cdot\left(3-x\right)\cdot\left(2x-4\right)=0\)
\(\Leftrightarrow4\left(7-x\right)^2\cdot\left(3-x\right)\cdot2\cdot\left(x-2\right)=0\)
\(\Leftrightarrow8\cdot\left(7-x\right)^2\cdot\left(3-x\right)\cdot\left(x-2\right)=0\)
Vì 8≠0
nên \(\left[{}\begin{matrix}\left(7-x\right)^2=0\\3-x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}7-x=0\\x=3\\x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=3\\x=2\end{matrix}\right.\)
Vậy: x∈{7;3;2}
i) Ta có: \(\left(5x-6\right)^2\cdot\left(x+2\right)\cdot\left(x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(5x-6\right)^2=0\\x+2=0\\x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x-6=0\\x=-2\\x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=6\\x=-2\\x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{6}{5}\\x=-2\\x=-10\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{6}{5};-2;-10\right\}\)
j) Ta có: \(\left(3x-3\right)^3\cdot\left(x+4\right)=0\)
\(\Leftrightarrow27\cdot\left(x-1\right)^3\cdot\left(x+4\right)=0\)
Vì 27≠0
nên \(\left[{}\begin{matrix}\left(x-1\right)^3=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
Vậy: x∈{1;-4}
\(\left(x^2+5x\right)+10\left(x^2-5x\right)+24=0\)
\(\Leftrightarrow\left(x^2+5x\right)-10\left(x^2+5x\right)+24=0\)
\(\Leftrightarrow\left(x^2+5x\right)\left(1-10\right)+14=0\)
\(\Leftrightarrow\left(-9\right)\left(x^2+5x\right)+14=0\)
\(\Leftrightarrow-9\left(x^2+5x\right)=-14\)
\(\Leftrightarrow x^2+5x=\frac{14}{9}\)
\(\Leftrightarrow x=0,2938.....\)
2/ 5x ( 12x + 7 ) - ( 3x + 1 ) ( 20x - 5 ) = -100
\(\Leftrightarrow\) 60x2 + 35x - 60x2 + 15x - 20x + 5 = -100
\(\Leftrightarrow\) 30x = -100 - 5
\(\Leftrightarrow\) x = - 3,5
4/ ( x + 5 ) 2 + ( x + 4 ) ( x - 4 ) = 0
\(\Leftrightarrow\) x2 + 10x + 25 + x2 - 4 = 0
\(\Leftrightarrow\) 2x2 + 10x + 21 = 0
---> Phương trình vô nghiệm
Sửa đề bài : 4/ ( x + 5 ) 2 - ( x + 4 ) ( x - 4 ) = 0
\(\Leftrightarrow\) x2 + 10x + 25 - x2 + 4 = 0
\(\Leftrightarrow\) 10x = - 29
\(\Leftrightarrow\) x = \(-\dfrac{29}{10}\)
Vậy phương trình có nghiệm.......
\(x^2\left(x-5\right)+5-x=0\\ \Rightarrow\left(x-5\right)\left(x^2-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=-1\\x=1\end{matrix}\right.\)
\(\Leftrightarrow x^2\left(x-5\right)-\left(x-5\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=5\end{matrix}\right.\)