Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=10xy^2-\frac{3}{7}xy-8xy^2-\frac{4}{7}xy-y\)
a) \(Q=\left(10xy^2-8xy^2\right)+\left(-\frac{3}{7}xy-\frac{4}{7}xy\right)-y\)
\(Q=2xy^2-xy-y\)
b) Chỗ này sửa thành Q nhá
Thay x = -7 ; y = -2 vào Q ta được :
\(Q=2\cdot\left(-7\right)\cdot\left(-2\right)^2-\left(-7\right)\cdot\left(-2\right)-\left(-2\right)\)
\(Q=2\cdot\left(-7\right)\cdot4-14+2\)
\(Q=-56-14+2\)
\(Q=-68\)
Vậy giá trị của Q = -68 khi x = -7 ; y = -2
\(2019x^2+x+2020=0\)
\(\Leftrightarrow2019\left(x^2+\frac{x}{2019}+\frac{2020}{2019}\right)=0\)
\(\Leftrightarrow x^2+2\cdot x\cdot\frac{1}{4038}+\frac{1}{4038^2}+\frac{2020}{2019}-\frac{1}{4038^2}=0\)
\(\Leftrightarrow\left(x+\frac{1}{4038}\right)^2+\frac{2020\cdot8076-1}{4038^2}=0\)
\(\Leftrightarrow\left(x+\frac{1}{4038}\right)^2=-\frac{2020\cdot8076-1}{4038^2}\)(1)
Vì \(2020\cdot8076-1>0\Rightarrow\frac{2020\cdot8076-1}{4038^2}>0\)
\(\Rightarrow-\frac{2020\cdot8076-1}{4038^2}< 0\)(2)
Từ (1) và (2) suy ra đa thức vô nghiệm
\(\)
a) f(x) = x(x - 5) + 2(x - 5)
x(x - 5) + 2(x - 5) = 0
<=> (x - 5)(x - 2) = 0
x - 5 = 0 hoặc x - 2 = 0
x = 0 + 5 x = 0 + 2
x = 5 x = 2
=> x = 5 hoặc x = 2
a, f(x) có nghiệm
\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)
->tự kết luận.
b1, để g(x) có nghiệm thì:
\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)
\(\Rightarrow2x^2-4x-x^2+5+4x=0\)
\(\Rightarrow x^2+5=0\)
Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)
suy ra: k tồn tại \(x^2+5=0\)
Vậy:.....
b2,
\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)
\(=x^2-5x+2x-10\)
\(=x^2-3x-10\)
\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)
\(=x^2+5-x^2+3x-10=3x-5\)
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
\(2014x^2+2012x-2=0\)
<=>\(2014x^2-2x+2014x-2=0\)
<=>\(\left(2014x^2-^{ }2014x\right)+\left(2x-2\right)\)\(=0\)
<=>\(2014x\left(x-1\right)+2\left(x-1\right)\)\(=0\)
<=>(2014x+2)(x-1)=0
<=>2014x+2=0 <=> x=-1/1007
x-1=0 x=1
kết luận........
- tỉ lệ nghịch là 2 đại lượng đối nghịch nhau kiểu như cái này tăng thì cái kia giảm (tc thì xét tích tương ứng)
- tỉ lệ thuận là 2 đại lượng cùng tăng và cùng giảm (tc thì xét tỉ số)
Theo cách hiểu của t là thế
. Tỉ lệ thuận: Nếu đại lượng x tăng thì đại lượng y cũng tăng, đại lượng x giảm thì đại lượng y cũng giảm. Công thức: y = k.x (k là hằng số khác 0).
. Tỉ lệ nghịch: Nếu đại lượng x tăng lên thì đại lượng y giảm xuống, đại lượng y tăng lên thì đại lượng x giảm. Công thức: y = \(\frac{a}{x}\) hay a = x.y (a là hằng số khác 0)
a, \(A=2\left(x-1,5\right)-5=0\)
\(2x-3-5=0\Leftrightarrow2x-8=0\Leftrightarrow2x=8\Leftrightarrow x=4\)
b, \(B=-3x+8+6x-9=0\)
\(3x-1=0\Leftrightarrow3x=1\Leftrightarrow x=\frac{1}{3}\)
c, \(C=6x-18x^3=0\)
\(6x\left(1-3x^2\right)=0\Leftrightarrow\orbr{\begin{cases}6x=0\\1-3x^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\3x^2=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x^2=\frac{1}{3}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=\pm\frac{1}{\sqrt{3}}\end{cases}}}\)
a, A lớn nhất khi 7x la nguyên dương nho nhất
\(\Rightarrow7x=1\)
\(\Rightarrow x=\frac{1}{7}\)
\(b,B=\frac{10+4-x}{4-x}\)
\(B=\frac{10}{4-x}+1\)
b lon nhat khi 4-xla nguyen duong nho nhat
\(\Rightarrow4-x=1\)
\(\Rightarrow x=4-1=3\)
\(c,C=\frac{27-2x}{12-x}=\frac{3+24-2x}{12-x}=\frac{3}{12-x}+2\)
c lon nhat khi 12-x la nguyen duong nho nhat
\(\Rightarrow12-x=1\Rightarrow x=11\)
Có 2 nghiệm
Đặt B=0
=>x^2-9=0
=>x^2=9
=>x=3 hoặc x=-3
`B=x^2-9=0`
`-> x^2=0+9`
`-> x^2=9`
`-> x^2=(+-3)^2`
`-> x=+-3`
Vậy, đa thức `B` có `2` nghiệm là `x={3 ; -3}`.