K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2016

b)(x2+x+1)(x2+x+2)-12

Đặt t=x2+x+1

t(t+1)-12=t2+t-12

=(t-3)(t+4)=(x2+x+1-3)(x2+x+1+4)

=(x2+x-2)(x2+x+5)

=(x-1)(x+2)(x2+x+5)

c)(x2+8x+7)(x2+8x+15)+15

Đặt t=x2+8x+7 

t(t+8)+15=t2+8t+15

=(t+3)(t+5)

=(x2+8x+7+3)(x2+8x+7+15)

=(x2+8x+10)(x2+8x+22)

d)(x+2)(x+3)(x+4)(x+5)-24

=(x2+7x+10)(x2+7x+12)-24

Đặt t=x2+7x+10

t(t+2)-24=(t-4)(t+6)

=(x2+7x+10-4)(x2+7x+10+6)

=(x2+7x+6)(x2+7x+16)

=(x+1)(x+6)(x2+7x+16)

4 tháng 11 2016

a/ Đặt x2 + 4x + 8 = a

Thì đa thức ban đầu thành

a2 + 3ax + 2x= (a2 + 2ax + x2) + (ax + x2)

= (a + x)2 + x(a + x) = (a + x)(a + 2x)

27 tháng 10 2018

Đặt \(A=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(A=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt \(x^2+7x+10=y\)

\(\Rightarrow\)\(A=y.\left(y+2\right)-24\)

\(A=y^2+2y+1-25\)

\(A=\left(y+1\right)^2-5^2\)

\(A=\left(y+1-5\right)\left(y+1+5\right)\)

\(A=\left(y-4\right)\left(y+6\right)\)

\(\Rightarrow A=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(A=\left[\left(x^2+x\right)+\left(6x+6\right)\right].\left(x^2+7x+16\right)\)

\(A=\left[x.\left(x+1\right)+6.\left(x+1\right)\right].\left(x^2+7x+16\right)\)

\(A=\left(x+1\right).\left(x+6\right).\left(x^2+7x+16\right)\)

27 tháng 10 2018

Đặt \(B=\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)

\(B=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)

Đặt \(12x^2+11x-1=a\)

\(\Rightarrow B=a.\left(a+3\right)-4\)

\(B=a^2+3a-4\)

\(B=\left(a^2-a\right)+\left(4a-4\right)\)

\(B=a.\left(a-1\right)+4.\left(a-1\right)\)

\(B=\left(a-1\right)\left(a+4\right)\)

\(\Rightarrow B=\left(12x^2+11x-2\right)\left(12x^2+11x+3\right)\)

11 tháng 10 2020

Rút gọn thôi chứ phân tích sao được ._.

( x - 3 )2 - ( 4x + 5 )2 - 9( x + 1 )2 - 6( x - 3 )( x + 1 )

= x2 - 6x + 9 - ( 16x2 + 40x + 25 ) - 9( x2 + 2x + 1 ) - 6( x2 - 2x - 3 )

= x2 - 6x + 9 - 16x2 - 40x - 25 - 9x2 - 18x - 9 - 6x2 + 12x + 18

= -30x2 - 52x - 7

11 tháng 10 2020

Sửa đề lại 1 chút là phân tích được mà bn Quỳnh:))

Ta có: \(\left(x-3\right)^2-\left(4x+5\right)^2+9\left(x+1\right)^2-6\left(x-3\right)\left(x+1\right)\)

\(=\left[\left(x-3\right)^2-6\left(x-3\right)\left(x+1\right)+9\left(x+1\right)^2\right]-\left(4x+5\right)^2\)

\(=\left(x-3-9x-9\right)^2-\left(4x+5\right)^2\)

\(=\left(8x+12\right)^2-\left(4x+5\right)^2\)

\(=\left(4x+7\right)\left(12x+17\right)\)

31 tháng 10 2020

a) Đặt: x = a- b; y = b - c ; z = c- a 

Ta có: x + y + z = 0 

=> \(A=x^3+y^3+z^3=3xyz+\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=3xyz\)

=> \(A=3xyz=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

b) Đặt: \(a=x^2-2x\) 

Ta có: \(B=a\left(a-1\right)-6=a^2-a-6=\left(a+2\right)\left(a-3\right)=\left(x^2-2x+2\right)\left(x^2-2x-3\right)\)

\(=\left(x^2-2x+2\right)\left(x+1\right)\left(x-3\right)\)

d) \(D=4\left(x^2+2x-8\right)\left(x^2+7x-8\right)+25x^2\)

Đặt: \(x^2-8=t\)

Ta có: \(D=4\left(t+2x\right)\left(t+7x\right)+25x^2\)

\(=4t^2+36xt+81x^2=\left(2t+9x\right)^2\)

\(=\left(2x^2+9x-16\right)^2\)