K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2018

vì x>y>0 nên \(x+y\ne0\).Theo tính chất cơ bản của phân thức,ta có :

\(\dfrac{x-y}{x+y}=\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\dfrac{x^2-y^2}{x^2+2xy+y^2}\left(1\right)\)

Mặt khác,vì x,y>0 nên \(x^2+2xy+y^2>x^2+y^2\)

Vậy \(\dfrac{x^2-y^2}{x^2+2xy+y^2}< \dfrac{x^2-y^2}{x^2+y^2}\left(2\right)\) Từ \(\left(1\right),\left(2\right)\) ta suy ra : \(\dfrac{x-y}{x+y}< \dfrac{x^2-y^2}{x^2+y^2}\)

22 tháng 2 2018

chết, mik nhầm

2 tháng 5 2018

Ta có: \(\left\{{}\begin{matrix}\dfrac{x-y}{x+y}=\dfrac{x+y-2y}{x+y}=1-\dfrac{2y}{x+y}\\\dfrac{x^2-y^2}{x^2+y^2}=\dfrac{x^2+y^2-2y^2}{x^2+y^2}=1-\dfrac{2y^2}{x^2+y^2}\end{matrix}\right.\)

bđt cần chứng minh tương đương với:

\(\dfrac{2y}{x+y}>\dfrac{2y^2}{x^2+y^2}\Leftrightarrow\dfrac{2y\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2+y^2\right)}>\dfrac{2y^2\left(x+y\right)}{\left(x+y\right)\left(x^2+y^2\right)}\)

\(\Rightarrow2x^2y+2y^3>2y^2x+2y^3\)

\(\Rightarrow2x^2y>2y^2\Leftrightarrow x>y\) (đúng)

\(\Rightarrow\) bất đẳng thức cần cm đúng. (đpcm)

5 tháng 5 2018

Cảm ơn bạn

5 tháng 4 2018

Áp dụng bất đẳng thức AM-GM:

\(\dfrac{x^3}{x^2+y^2}=\dfrac{x\left(x^2+y^2\right)-xy^2}{x^2+y^2}=x-\dfrac{xy^2}{x^2+y^2}\ge x-\dfrac{xy^2}{2xy}=x-\dfrac{y}{2}\)

4 tháng 4 2017

Ta có:\(\dfrac{x^2}{a}+\dfrac{y^2}{b}\) \(\geq\) \(\dfrac{\left(x+y\right)^2}{a+b}\)(1)

\(\Leftrightarrow\) \(\dfrac{bx^2+ay^2}{ab}\) \(\geq\) \(\dfrac{\left(x+y\right)^2}{a+b}\)

\(\Leftrightarrow\) (a+b)(bx2+ay2) \(\geq\) ab(x+y)2

\(\Leftrightarrow\) abx2+a2y2+b2x2+aby2 \(\geq\) ab(x2+2xy+y2)

\(\Leftrightarrow\) abx2+(ay)2+(bx)2+aby2 \(\geq\) abx2+2abxy+aby2

\(\Leftrightarrow\) abx2+(ay)2+(bx)2+aby2 -abx2-2abxy-aby2 \(\geq\) 0

\(\Leftrightarrow\) (ay)2-2abxy+(bx)2 \(\geq\) 0

\(\Leftrightarrow\) (ay)2-2(ay).(bx)+(bx)2 \(\geq\) 0

\(\Leftrightarrow\) (ay-bx)2 \(\geq\) 0(2)

Ta có BĐT(2) luôn đúng nên suy ra BĐT(1) luôn đúng.

Dấu = xảy ra khi và chỉ khi x=y=0.

4 tháng 4 2017

Cho mình sửa dấu =

Dấu= xảy ra khi \(\begin{cases} x=y\\ a=b \end{cases}\)

7 tháng 4 2017

*)Cách cho THCS Yahoo Hỏi & Đáp

*)Cách cho THPT

Áp dụng C-S dạng Engel \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{3\sqrt[3]{xyz}}=\frac{3}{\sqrt[3]{xyz}}\)

Vậy chứng minh \(\frac{3}{\sqrt[3]{xyz}}>\frac{18}{xyz+2}\Leftrightarrow xyz-6\sqrt[3]{xyz}+2>0\)

Đặt \(t=\sqrt[3]{xyz}\le\frac{x+y+z}{3}=\frac{1}{3}\Rightarrow0< t\le\frac{1}{3}\)

Hàm số \(f\left(t\right)=t^3-6t+2\) nghịch biến trên (\(0;\frac{1}{3}\)]

\(f\left(t\right)\ge f\left(\frac{1}{3}\right)=\frac{1}{27}>0\) (ĐPCM)

8 tháng 4 2017

Thắng bị ngược dấu ngay dòng dùng schwarz rồi kìa

AH
Akai Haruma
Giáo viên
6 tháng 5 2021

Lời giải:

Đặt $\frac{x}{a}=m; \frac{y}{b}=n; \frac{z}{c}=p$ với $m,n,p>0$.

BĐT cần chứng minh tương đương với:

(m^2a+n^2b+p^2c)(a+b+c)\geq (am+bn+cp)^2$

$\Leftrightarrow m^2(ab+ac)+n^2(ba+bc)+p^2(ca+cb)\geq 2abmn+2amcp+2bncp$

$\Leftrightarrow ab(m^2-2mn+n^2)+bc(n^2-2np+p^2)+ca(m^2-2mp+p^2)\geq 0$

$\Leftrightarrow ab(m-n)^2+bc(n-p)^2+ca(m-p)^2\geq 0$ 

(luôn đúng với $a,b,c>0$)

Ta có đpcm.

28 tháng 2 2018

Áp dụng BĐT Cô si cho 2 số dương a,b ta có \(\dfrac{a+b}{2}\ge\sqrt{ab}\)

\(\dfrac{1}{a}+\dfrac{1}{b}\ge2.\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=>\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2\sqrt{ab}.2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}\)

suy ra \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\).Áp dụng vào bài toán ta có :\(\dfrac{1}{x^2+xy}+\dfrac{1}{y^2+xy}\ge\dfrac{4}{x^2+xy+y^2+xy}=\dfrac{4}{\left(x+y\right)^2}\ge4\) (Do \(x+y\le1\))

28 tháng 2 2018

Áp dụng bất đẳng thức Cauchy-Schwarz:

\(\dfrac{1}{x^2+xy}+\dfrac{1}{y^2+xy}\ge\dfrac{\left(1+1\right)^2}{x^2+2xy+y^2}=\dfrac{4}{\left(x+y\right)^2}\ge\dfrac{4}{1}=4\)

8 tháng 4 2017

Ta có:

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(1+1+1\right)^2}{z+y+z}=9=\dfrac{18}{2}>\dfrac{18}{xyz+2}\)