K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) “Vịnh Hạ Long là di sản thiên nhiên thế giới” là mệnh đề đúng.

b) “\(\sqrt {{{( - 5)}^2}}  =  - 5\)” là mệnh đề sai (vì \(\sqrt {{{( - 5)}^2}}  = \left| { - 5} \right| = 5\)).

c) “\({5^2} + {12^2} = {13^2}\)” là mệnh đề đúng (vì \({5^2} + {12^2} = 169 = {13^2}\))

CÁC BẠN GIẢI JUP MIK VỚI !! :))Bài 1: Xét tính đúng sai của các mệnh đề sau:a) Phương trình có hai nghiệm phân biệt.b) 2k là số chẵn. (k là số nguyên bất kì)c) 211 – 1 chia hết cho 11.Bài 2: Cho tứ giác ABDC: Xét hai mệnh đềP: Tứ giác ABCD là hình vuông.Q: Tứ giác ABCD là hình chữ nhật có hai đường chéo bằng vuông góc với nhau.Hãy phát biểu mệnh đề P ↔ Q bằng hai cách khác nhau, xét tính...
Đọc tiếp

CÁC BẠN GIẢI JUP MIK VỚI !! :))

Bài 1: Xét tính đúng sai của các mệnh đề sau:

a) Phương trình có hai nghiệm phân biệt.

b) 2k là số chẵn. (k là số nguyên bất kì)

c) 211 – 1 chia hết cho 11.

Bài 2: Cho tứ giác ABDC: Xét hai mệnh đề

P: Tứ giác ABCD là hình vuông.

Q: Tứ giác ABCD là hình chữ nhật có hai đường chéo bằng vuông góc với nhau.

Hãy phát biểu mệnh đề P ↔ Q bằng hai cách khác nhau, xét tính đúng sai của các mệnh đề đó.

Bài 3: Cho mệnh đề chứa biến P(n): n2 – 1 chia hết cho 4 với n là số nguyên. Xét tính đúng sai của mệnh đề khi n = 5 và n = 2.

Bài 4: Nêu mệnh đề phủ định của các mệnh đề sau:

Bài tập mệnh đề toán học lớp 10

Bài 5: Xét tính đúng sai và nêu mệnh đề phủ định của các mệnh đề:

a) Tứ giác ABCD là hình chữ nhật.

b) 16 là số chính phương.

Bài tập mệnh đề toán học lớp 10

Bài 6: Cho tứ giác ABCD và hai mệnh đề:

P: Tổng 2 góc đối của tứ giác bằng 1800;

Q: Tứ giác nội tiếp được đường tròn.

Hãy phát biểu mệnh đề kéo theo P => Q và xét tính đúng sai của mệnh đề này.

Bài 7: Cho hai mệnh đề

P: 2k là số chẵn.

Q: k là số nguyên

Hãy phát biểu mệnh đề kéo theo và xét tính đúng sai của mệnh đề.

Bài 8: Hoàn thành mệnh đề đúng:

Tam giác ABC vuông tại A nếu và chỉ nếu ...................

- Viết lại mệnh đề dưới dạng một mệnh đề tương đương.

Bài 9: Xét tính đúng sai của các mệnh đề và viết mệnh đề phủ định của các mệnh đề.

Bài tập mệnh đề toán học lớp 10

Bài 10: Xét tính đúng sai của các suy luận sau: (mệnh đề kéo theo)

Bài tập mệnh đề toán học lớp 10

Bài 11: Phát biểu điều kiện cần và đủ để một:

  • Tam giác là tam giác cân.
  • Tam giác là tam giác đều.
  • Tam giác là tam giác vuông cân.
  • Tam giác đồng dạng với tam giác khác cho trước.
  • Phương trình bậc 2 có hai nghiệm phân biệt.
  • Phương trình bậc 2 có nghiệm kép.
  • Số tự nhiên chia hết cho 2; cho 3; cho 5; cho 6; cho 9 và cho 11.

Bài 12: Chứng mình rằng: Với hai số dương a, b thì a + b ≥ 2√ab.

Bài 13: Xét tính đúng sai của mệnh đề:

Nếu một số tự nhiên chia hết cho 15 thì chia hết cho cả 3 và 5.

Bài 14: Phát biểu và chứng minh định lí sau:

a) n là số tự nhiên, n2 chia hết cho 3 thì n cũng chia hết cho 3.

b) n là số tự nhiên, n2 chia hết cho 6 thì n cũng chia hết cho cả 6; 3 và 2.

(Chứng minh bằng phản chứng)

1
22 tháng 2 2019

(P⇒Q) đúng, (Q⇒P) sai.

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) \(\overline A \): “\(\frac{5}{{1,2}}\) không là một phân số”.

Đúng vì \(\frac{5}{{1,2}}\) không là phân số (do 1,2 không là số nguyên)

b) \(\overline B \): “Phương trình \({x^2} + 3x + 2 = 0\) vô nghiệm”.

Sai vì phương trình \({x^2} + 3x + 2 = 0\) có hai nghiệm là \(x =  - 1\) và \(x =  - 2\).

c) \(\overline C \): “\({2^2} + {2^3} \ne {2^{2 + 3}}\)”.

Đúng vì \({2^2} + {2^3} = 12 \ne 32 = {2^{2 + 3}}\).

d) \(\overline D \): “Số 2 025 không chia hết cho 15”.

Sai vì 2025 = 15. 135, chia hết cho 15.

17 tháng 5 2017

a) \(\left(P\Rightarrow Q\right):\) "Nếu a có tận cùng bằng 0 thì a chia hết cho 5".

Mệnh đề đảo \(\left(Q\Rightarrow P\right):\)"Nếu a chia hết cho 5 thì a có tận cùng bằng 0"

b) \(\left(P\Rightarrow Q\right):\) đúng. \(\left(Q\Rightarrow P\right):\) sai

17 tháng 5 2017

a) \(\overline{P}\) là mệnh đề " 15 chia hết cho 3"; P sai, \(\overline{P}\) đúng

b) \(\overline{Q}\) là mệnh đề "\(\sqrt{2}\le1\)"; Q đúng, \(\overline{Q}\) sai

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Mệnh đề sai, vì chỉ có \(x =  - 3\) thảo mãn \(x + 3 = 0\) nhưng \( - 3 \notin \mathbb{N}\).

Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{N},x + 3 \ne 0\)”.

b) Mệnh đề đúng, vì  \({(x - 1)^2} \ge 0\) hay\({x^2} + 1 \ge 2x\) với mọi số thực x.

Mệnh đề phủ định của mệnh đề này là: “\(\exists x \in \mathbb{R},{x^2} + 1 < 2x\)”

 c) Mệnh đề sai, vì có \(a =  - 2 \in \mathbb{R},\sqrt {{{( - 2)}^2}}  = 2 \ne a\)

Mệnh đề phủ định của mệnh đề này là: “\(\exists a \in \mathbb{R},\sqrt {{a^2}}  \ne a\)”.

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

P: “tam giác ABC vuông tại A”

Q: “tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\)”

+) Mệnh đề \(Q \Rightarrow P\) là “Nếu tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\)thì tam giác ABC vuông tại A”

+) Từ định lí Pytago, ta có:

Tam giác ABC vuông tại A thì \(A{B^2} + A{C^2} = B{C^2}\)

Và: Tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\) thì vuông tại A.

Do vậy, hai mệnh đề “\(P \Rightarrow Q\)” và “\(Q \Rightarrow P\)” đều đúng.

17 tháng 5 2017

a) \(\left(P\Rightarrow Q\right):\)"Nếu \(x\) là một số hữu tỉ \(x^2\) cũng là một số hữu tỉ". Mệnh đề đúng.

b) Mệnh đề đảo là " Nếu \(x^2\) là một số hữu tỉ thì \(x\) là một số hữu tỉ"

c) Chẳng hạn, với \(x=\sqrt{2}\) mệnh đề này sai