Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điểm cực tiểu A(0;-2), điểm cực đại B(2;2)
Mình không hiểu đề bài yêu cầu tìm đường thẳng đi qua điểm A và B, đi qua cả A và B hay là các tiếp tuyến tại A và B?
Tập xác định: D=\(\left[-2\sqrt{2};2\sqrt{2}\right]\).
\(y'=1-\dfrac{x}{\sqrt{8-x^2}}\) = 0 \(\Rightarrow\) x=2.
Bảng biến thiên:
Vậy hàm số đã cho đồng biến trên khoảng (\(-2\sqrt{2}\);2), nghịch biến trên khoảng (2;\(2\sqrt{2}\)) và yCĐ=4 (tại x=2).
Tham khảo: Đồ thị:
a. ĐKXĐ: \(-3\le x\le3\)
\(y'=1-\dfrac{x}{\sqrt{9-x^2}}=\dfrac{\sqrt{9-x^2}-x}{\sqrt{9-x^2}}=0\Rightarrow x=\dfrac{3\sqrt{2}}{2}\)
Dấu của y':
Hàm đồng biến trên \(\left(-3;\dfrac{3\sqrt{2}}{2}\right)\) và nghịch biến trên \(\left(\dfrac{3\sqrt{2}}{2};3\right)\)
b.
ĐKXĐ: \(x\ne2\)
\(y'=\dfrac{\left(-2x-1\right)\left(x+2\right)+x^2+x+2}{\left(x+2\right)^2}=\dfrac{-x^2-4x}{\left(x+2\right)^2}=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Dấu của y':
Hàm đồng biến trên các khoảng \(\left(-4;-2\right)\) và \(\left(-2;0\right)\)
Hàm nghịch biến trên các khoảng \(\left(-\infty;-4\right)\) và \(\left(0;+\infty\right)\)
\(y=x^3-mx^2+\left(1-2m\right)x+1\)
\(y'=3x^2-2mx+1-2m\)
Để đồ thị hàm số đã cho có hai cực trị nằm về hai phía của trục tung thì phương trình \(y'=0\)có hai nghiệm phân biệt \(x_1,x_2\)thỏa mãn \(x_1x_2< 0\).
Ta có: \(y'=0\Leftrightarrow3x^2-2mx+1-2m=0\)(1)
Để (1) có hai nghiệm phân biệt thỏa mãn \(x_1x_2< 0\)thì:
\(\hept{\begin{cases}\Delta'=m^2-3\left(1-2m\right)>0\\\frac{1-2m}{3}< 0\end{cases}}\Leftrightarrow m>\frac{1}{2}\).
Vậy \(m>\frac{1}{2}\)thỏa mãn ycbt.
ta có y'=3x^2-m
để hs có cực trị thì y'=0 có nghiệm phân biệt <=>3x^2-m=0<=>x^2=m/3<=>m/3>0 =>m>0
vậy với m>0 thì hs có cực trị
đáp án là :
Hàm số đã cho xác định trên D=R.
Tính y' = -3x2 + 12x - 9. Cho y' = 0 ⇔ -3x2 + 12x - 9 = 0 ⇔
Bảng biến thiên:
Dựa vào bảng biến thiên,hàm số đồng biến trên (1;3).
Hàm số nghịch biến trên các khoảng (-∞; 1) và (3; +∞)
Hàm số đã cho xác định trên D=R.
Tính y' = -3x2 + 12x - 9. Cho y' = 0 ⇔ -3x2 + 12x - 9 = 0 ⇔
Bảng biến thiên:
Dựa vào bảng biến thiên,hàm số đồng biến trên (1;3).
Hàm số nghịch biến trên các khoảng (-∞; 1) và (3; +∞)
P/S : quá dễ , t là thần đồng mà .
Mỗi ngày 3 T i c k , giờ làm như lời hứa đi
\(y'=-4x^3-4x=-4x\left(x^2+1\right)=0\Rightarrow x=0\)
Dấu của y':
Hàm đồng biến trên \(\left(-\infty;0\right)\) và nghịch biến trên \(\left(0;+\infty\right)\)
Qua \(x=0\) ta thấy y' đổi dấu từ dương sang âm nên \(x=0\) là điểm cực đại