Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c/
ĐKXĐ: ...
Đặt \(cosx+\frac{2}{cosx}=a\Rightarrow cos^2x+\frac{4}{cos^2x}=a^2-4\)
Pt trở thành:
\(9a+2\left(a^2-4\right)=1\)
\(\Leftrightarrow2a^2+9a-9=0\)
Pt này nghiệm xấu quá bạn :(
d/ĐKXĐ: ...
Đặt \(\frac{2}{cosx}-cosx=a\Rightarrow cos^2x+\frac{4}{cos^2x}=a^2+4\)
Pt trở thành:
\(2\left(a^2+4\right)+9a-1=0\)
\(\Leftrightarrow2a^2+9a+7=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=-\frac{7}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{2}{cosx}-cosx=-1\\\frac{2}{cosx}-cosx=-\frac{7}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-cos^2x+cosx+2=0\\-cos^2x+\frac{7}{2}cosx+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}cosx=-1\\cosx=2\left(l\right)\\cosx=4\left(l\right)\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
b/
ĐKXĐ: ...
Đặt \(sinx+\frac{1}{sinx}=a\Rightarrow sin^2x+\frac{1}{sin^2x}=a^2-2\)
Pt trở thành:
\(4\left(a^2-2\right)+4a=7\)
\(\Leftrightarrow4a^2+4a-15=0\Rightarrow\left[{}\begin{matrix}a=\frac{3}{2}\\a=-\frac{5}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}sinx+\frac{1}{sinx}=\frac{3}{2}\\sinx+\frac{1}{sinx}=-\frac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin^2x-\frac{3}{2}sinx+1=0\left(vn\right)\\sin^2x+\frac{5}{2}sinx+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}sinx=-\frac{1}{2}\\sinx=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
a) y = \(f\left(x\right)=cos\left(x-\frac{\pi}{4}\right)\) không phải là hàm số chẵn , không phải là hàm số lẻ , vì chẳng hạn \(f\left(\frac{3\pi}{4}\right)=0\) ; \(f\left(-\frac{3\pi}{4}\right)=-1\)
b) y = tan|x| có tập xác định D1 \(=R\backslash\left\{\frac{\pi}{2}+k\pi\left|k\in Z\right|\right\}\) và với mọi x \(\in\) D1 thì - x \(\in\) D1 và tan|-x| = tan|x| nên hàm số chẵn
c) y = tanx - sin2x có tập xác định D1 và với mọi x \(\in\) D1 thì - x \(\in\) D1 và tan(-x) - sin2(-x) = -(tanx - sin2x ) nên hàm số lẻ
a.
\(sinx+cosx+\left(sinx+cosx\right)^2+cos^2x-sin^2x=0\)
\(\Leftrightarrow sinx+cosx+\left(sinx+cosx\right)^2+\left(cosx-sinx\right)\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(1+2cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\\1+2cosx=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
3.
a.
\(\Leftrightarrow\left(cos3x-cosx\right)+\left(cos2x-1\right)=0\)
\(\Leftrightarrow-2sin2x.sinx+1-2sin^2x-1=0\)
\(\Leftrightarrow sin2x.sinx+sin^2x=0\)
\(\Leftrightarrow2sin^2x.cosx+sin^2x=0\)
\(\Leftrightarrow sin^2x\left(2cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{2\pi}{3}+k2\pi\\x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
1/ Txđ của cả 2 hàm số trên là: D = R
Ta thấy: x thuộc D và - x cũng thuộc D
y = sin x - cos x = f(x)
Ta có: f(-x) = sin (-x) - cos (-x) = - sin x - cos x
=> Hàm số này không chẵn cũng không lẻ
2/ -Tập xác định:D=R => tập xác dịnh là tập đối xứng
-với mỗi x thuộc D thì -x thuộc D
-xét trường hợp:
+ f(-x)=f(x) => hàm chẵn
+ f(-x)=-f(x) => hàm lẻ
+còn lại là hàm số lhông chẵn không lẽ
trường hợp trên là hàm không chẵn không lẻ
2/ cụ thể ra sao ạ