K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2024

Để chứng minh rằng nếu A chia hết cho 2011 thì A cũng sẽ chia hết cho 2011^11, ta sẽ xét phần dư của A khi chia cho 2011.

Ta có A = (5a + 2006b)(6a + 2005b)(7a + 2004b)...(15a + 1996b)
Gọi B = a + 2007b, ta có A = (5B)(6B - B)(7B - 2B)...(15B - 10B) = 5*6*7*...*15 * B^11

Vì A chia hết cho 2011, suy ra B^11 chia hết cho 2011, nghĩa là B chia hết cho 2011.

Do đó, B = 2011k với k là số nguyên dương.

Từ đó, ta có A = 5*6*7*...*15 * (2011k)^11 = (5*6*7*...*15)*(2011^11)*k^11

Vì 5*6*7*...*15 chia hết cho 2011 nên A chia hết cho 2011^11.

Vậy nếu A chia hết cho 2011 thì A cũng chia hết cho 2011^11.

Các thừa số của C đều có dạng : na + ( 2011 - n ) b = 2011b + n ( a - b ) với n = 5 ; 6 ; ... ; 15 (1)

Nếu C chia hết cho số nguyên 2011 thì tồn tại ít nhất một thừa số của C chia hết cho 2011, đó là ma + ( 2011 - m ) b = 2011b + m ( a - b ) với m thỏa mãn 5 \(\le\) \(\le\) 15 

Từ đó :

=> m ( a - b ) chia hết cho 2011 mà 5 \(\le\) m \(\le\) 15 nên a - b chia hết cho 2011

=> Các thừa số n ( a - b ), ứng n = 5 ; 6 ; .... ; 15 đều chia hết cho 11. Do đó theo (1) tất cả 11 thừa số của C đều chia hết cho 2011

Vậy nếu C chia hết cho 2011 thì C cũng chia hết cho 201111

16 tháng 1 2017

hu hu chưa có ai giúp mình à

16 tháng 1 2017

em ko bít làm vì em mới lớp 5

7 tháng 10 2019

1) Chứng tỏ:

a) ab + ba chia hết cho 11.

Ta có: ab + ba = 10a + b + 10b + a

                        = 11a + 11b

                        = 11( a + b )

Vì 11( a + b ) chia hết cho 11 nên ab + ba chia hết cho 11 ( đpcm )

b) ab - ba chia hết cho 9.

Ta có: ab - ba = 10a + b - (10b + a)

                       = 10a + b - 10b - a

                       = 9a - 9b

                       = 9( a - b )

Vì 9( a - b ) chia hết cho 9 nên ab - ba chia hết cho 9.

2) Chứng tỏ:

a) Nếu ( ab + cd ) chia hết cho 99 thì abcd chia hết cho 99.

Ta có:  ab + cd chia hết cho 99

=> 99ab + ab + cd chia hết cho 99.

=> 100ab + cd chia hết cho 99.

=> abcd chia hết cho 99 ( đpcm )

b) Nếu ( abc + def ) chia hết cho 37 thì abcdef chia hết cho 37.

Ta có: abcdef = 1000abc + def = 999abc + abc + def = 37.27abc + (abc + def

Vì 37.27abc chia hết cho 37 nên nếu abc def chia hết cho 37 thì abcdef chia hết cho 37.

~ Huhu, cho mình xin lỗi, phần 3 mình không có thời gian để làm TwT ~

1 tháng 1 2019

\(Giải\)

Vì: 11 là số nguyên tố mà:(5a+6b)(6a+5b) chia hết cho 11

nên ít nhất 1 trong 2 số trên chia hết cho 11

+) 2 số chia hết cho 11 khi đó (5a+6b)(6a+5b) chia hết cho 121

+) 5a+6b chia hết cho 11

=> 11a+11b-5a-6b chia hết cho 11 <=> 6a+5b chia hết cho 11

=> (5a+6b)(6a+5b) chia hết cho 121

+) 6a+5b chia hết cho 11

=> 11a+11b-6a-5b chia hết cho 11

<=> 5a+6b chia hết cho 11

=> (5a+6b)(6a+5b) chia hết cho 11

Vậy: nếu  (5a+6b)(6a+5b) chia hết cho 11 thì tích đó cũng chia hết cho 121 (đpcm)

17 tháng 8 2016

Sửa lại đề : nếu b nguyên tố lớn hơn 3 thì : b3 - 2014b chia hết cho 3 .

TH1 : b chia 3 dư 1

Ta có :

\(b\text{≡}1\left(mod3\right)\)

\(\Rightarrow b^3\text{≡}1\left(mod3\right)\)

\(2014b\text{≡}2014\left(mod3\right)\)

\(\Rightarrow b^3-2014b\text{≡}1-2014\text{≡}-2013\text{≡}0\left(mod3\right)\)

TH2 : b chia 3 dư 2 

Ta có :

\(b\text{≡}2\left(mod3\right)\)

\(\Rightarrow b^3\text{≡}8\text{≡}2\left(mod3\right)\)

\(2014b\text{≡}4028\text{≡}2\left(mod3\right)\)

\(\Rightarrow b^3-2014b\text{≡}2-2\text{≡}0\left(mod3\right)\)

Vậy ...