\(\overline{abc}\). Tìm giá trị lớn nhất và giá trị nhỏ của biểu thức P=<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 7 2021

\(P=\dfrac{100a+10b+c}{a+b+c}\le\dfrac{100a+100b+100c}{a+b+c}=100\)

\(P_{max}=100\) khi \(b=c=0\)

Mặt khác ta có \(\left\{{}\begin{matrix}a\ge1\\c\le9\end{matrix}\right.\) \(\Rightarrow9a\ge c\Rightarrow90a\ge10c>9c\)

\(\Rightarrow P=\dfrac{10a+90a+10b+c}{a+b+c}>\dfrac{10a+9c+10b+c}{a+b+c}=10\)

Hay \(P-10>0\)

Ta cần tìm số k lớn nhất sao cho: \(\dfrac{100a+10b+c}{a+b+c}\ge k\) đồng thời \(10< k\le100\)

\(\Leftrightarrow100a+10b+c\ge ka+kb+kc\)

\(\Leftrightarrow\left(100-k\right)a\ge\left(k-10\right)b+\left(k-1\right)c\)

Mà \(\left\{{}\begin{matrix}\left(100-k\right)a\ge100-k\\\left(k-10\right)b+\left(k-1\right)c\le\left(k-10\right).9+\left(k-1\right).9=18k-99\end{matrix}\right.\)

\(\Rightarrow100-k\ge18k-99\Rightarrow k\le\dfrac{199}{19}\)

\(\Rightarrow k=\dfrac{199}{19}\)

Hay \(P_{min}=\dfrac{199}{19}\) khi \(\overline{abc}=199\)

10 tháng 7 2021

hay quá 

1 tháng 7 2019

Có: \(x+y\le\sqrt{2\left(x^2+y^2\right)}\)  (dấu bằng xảy ra khi và chỉ khi x=y)

Đặt: \(\hept{\begin{cases}abc=x\\def=y\end{cases}}\)Như vậy x+y đạt GTLN khia và chỉ khi x=y do x không ràng buộc khác y

Thật vậy với x=y thì\(abcdef-defabc=0\)chia hết cho 2010

Vì x,y là 2 số tự nhiên có 3 chữ số khác nhau thức không ràng buộc x khác y

Nên: \(x=y=987\)

Max x+y=\(\sqrt{4\cdot987^2}=1974\)

Không viết đúng không

:v

1 tháng 7 2019

Mình xem đáp án là 1328 với lại mình gõ nhầm;

abcdef là 2 số tự nhiên có 3 chữ số khác nhau. Biết abcdef - defabc chia hết cho 2010. Tìm giá trị lớn nhất của abc + def .

24 tháng 2 2017

Đặt A = \(\frac{ab}{a+b}\) = \(\frac{10a+b}{a+b}\) = 1 + \(\frac{9}{\frac{a+b}{a}}\)=  1 + \(\frac{9}{1+\frac{b}{a}}\)

Để A đạt giá trị nhỏ nhất thì \(\frac{9}{1+\frac{b}{a}}\)nhỏ nhất => 1 + \(\frac{b}{a}\) lớn nhất => \(\frac{b}{a}\) lớn nhất => b lớn nhất,a nhỏ nhất => b = 9,a = 1

Vậy Amin\(\frac{19}{1+9}\)= 1,9

MÃi mãi có một tương lai tươi sáng

29 tháng 4 2019

Ta có P=10a+b/a+b

           =9a+a+b/a+b

           =1+9a/a+b

          =1+9/a+b/a

         =1+9/1+b/a

Để P có giá trị nhỏ  nhất=>9/1+b/a cũng phải đạt giá trị nhỏ nhất=>1+b/a đạt giá trị lớn nhất<=>b/a có giá trị lớn nhất=>b lớn nhất  ; a nhỏ nhất

Mà a và b là số có 1 chữ số và a khác 0=>a=1 ; b=9=>ab=19

Khi đó P=19/1+9=1,9

1 tháng 5 2019
  1. llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
  2. llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
  3. llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
  4. llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
  5. Bạn Trần Hoàng Hải đó có làm đúng không vậy
  6. Người ta kêu tìm \(\overline{ab}\) kia mà
  7. Tự dưng đi tìm \(P\) làm gì vậy
  8. Kết quả là \(\overline{ab}=19\) đúng không
  9. Nếu đúng thì k nhé, nếu sai thì thôi vậy!
29 tháng 10 2016

100\(\le\)\(n^2\)-1=\(\overline{abc}\)\(\le\)999

\(\Rightarrow\)100<101\(\le\)\(n^2\)=\(\overline{abc}\)+1\(\le\)1000

\(\Rightarrow\)\(10^2\)<\(n^2\)<\(32^2\)\(\Rightarrow\)10<n<32

\(\overline{abc}\)-\(\overline{cba}\)=\(n^2\)-1-\(n^2\)+4n-4

\(\overline{abc}\)-\(\overline{cba}\)=(\(n^2\)-\(n^2\))+4n-1-4

\(\overline{abc}\)-\(\overline{cba}\)=0+4n-5

(100.a+10.b+c)-(100c+10b+a)=4n-5

99a-99c=4n-5

\(\Rightarrow\)4n-5\(⋮\)99(1)

Vì 10<n<32\(\Rightarrow\)35<4n<123(2)

Từ (1) và(2) \(\Rightarrow\)4n-5=99

\(\Rightarrow\)n=99+5 :4 =26

\(\overline{abc}\)=\(26^2\)-1

\(\overline{abc}\)=675

\(\overline{cba}\)=576

25 tháng 10 2016

abc = một trong các số có 3 chữ số

OK

10 tháng 9 2020

\(T=\frac{ab}{a+b}\)  ( ĐK : \(a;b\in N;0< a,b< 10\)

\(=\frac{10a+b}{a+b}\) 

\(=1+\frac{9a}{a+b}\) 

\(=1+\frac{9}{\frac{a+b}{a}}\) 

\(=1+\frac{9}{1+\frac{b}{a}}\) 

Để T đạt GTNN thì \(\frac{9}{1+\frac{b}{a}}\) đạt GTNN 

\(\Rightarrow1+\frac{b}{a}\) đạt GTLN 

\(\Rightarrow\) \(\frac{b}{a}\) đạt GTLN 

\(\Rightarrow\) b lớn nhất ; a nhỏ nhất 

\(\Rightarrow a=1;b=9\) 

T=\(\frac{19}{1+9}=\frac{19}{10}=1,9\) 

Vậy GTNN T = 1,9 khi và chỉ khi a = 1 ; b = 9 

1 tháng 11 2016

Ta có:

\(\overline{abc}=100a+10b+c=n^2-1\left(1\right)\)

\(\overline{cba}=100c+10b+a=\left(n-2\right)^2=n^2-4n+4\left(2\right)\)

Từ (1) và (2) suy ra:

\(99a-99c=4n-5\\ \Leftrightarrow99\left(a-c\right)=4n-5\)

Suy ra: \(4n-5⋮99\)

Ta có: \(100\le n^2-1\le999\)

\(\Leftrightarrow101\le n^2\le1000\)

\(\Leftrightarrow11\le n\le31\)

\(\Leftrightarrow44\le4n\le124\)

\(\Leftrightarrow39\le4n-5\le119\)

Suy ra: \(4n-5=99\)

Suy ra: \(n=26\)

Suy ra: \(\overline{abc}=26^2-1=675\)