K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2016

a) Vì số chẵn là số chia hết cho 2 nên ta có:
\(\overline{abc}=\overline{ab}+\overline{bc}+\overline{ca}+\overline{ac}+\overline{cb}+\overline{ba}\)

\(=10a+b+10b+c+10c+a+10a+c+10c+b+10b+a\)

\(=\left(10a+10a+a+a\right)+\left(10b+10b+b+b\right)+\left(10c+10c+c+c\right)\)

\(=22a+22b+22c\)

\(=22\left(a+b+c\right)\)

Vì \(22.\left(a+b+c\right)⋮2\) nên \(\overline{abc}\) là số chẵn ( đpcm )

Vì \(22.\left(a+b+c\right)⋮11\) nên \(\overline{abc}⋮11\) ( đpcm )

 

 

5 tháng 10 2016

a)theo cấu tạo số ta có:

abc = (a + b + c) x 2 x 11.               (1)

từ (1) ta có: abc chia hết cho 11 và là số chẵn

b) khi a = 1, ta có:

1bc = (1 + b + c) x 22

100 + bc = 22 + 22 x b + 22 x c

78 = 12 x b + 21 x c          (2)

Vậy 78 là số chẵn; 12 x b là số chẵn suy ra 21 x c cũng là số chẵn.Do (2) ta thấy c phải nhỏ hơn 4

Vậy c = 0 hoặc 2

-khi c = 0 thì 12 x b = 78 (không xác định được số b thỏa mãn yêu cầu 0)

-khi c = 2 thì 12 x b + 42 = 78

Vậy c = 2

Suy ra: 12 x b = 36 hay b = 3

Ta được số cần tìm là 132

Vậy abc = 132 

12 tháng 9 2017

a, ab + bc + ca = abc

ab + bc + ca = a00 + bc

ab + ca = a00

Vì ab và ca là số có hai chữ số nên tổng của chúng ko quá 200 => a = 1

Vì b + a có tận cùng là 0 => b = 9

c + a + nhớ 1 có tận cùng là 0 => c = 8

Vậy a=1,b=9,c=8

b, abc + ab + a = 874

Đổi chỗ các chữ số vào 1 cột, ta được:

abc                                      aaa
+                                       +
 ab                         =>            bb
+                                        + 
   a                                            c
____                                  ______

874                                       874

Do bb + c < 10 nên 847 \(\ge\overline{aaa}\) > 874 - 110 = 764 => \(\overline{aaa}=777\)

=> bb + c = 874 - 777 = 97 

Mà \(97\ge\overline{bb}>97-10=87\Rightarrow\overline{bb}=88\)

=> c = 97 - 88 = 9

Vậy a = 7, b = 8, c = 9 

23 tháng 6 2019

a) \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\)

\(=100100a+10010b+1001c\)

\(=1001\cdot\overline{abc}\)

\(=\overline{abc}\cdot7\cdot11\cdot13\)chia hết cho 11, 13

Đêm rồi không biết c/m chia hết cho 3 :)

b) \(\overline{aaa}=111\cdot a\)chia hết cho a

c) \(\overline{abc}=\overline{abc}\)nên \(\overline{abc}⋮\overline{abc}\)??? :)

23 tháng 6 2019

sửa đề

\(a,\overline{abcabc}⋮7;11;13\)

=\(\overline{abc}.1000+\overline{abc}\)

=\(\overline{abc}\left(1000+1\right)\)

= \(\overline{abc}.1001\)

= \(\overline{abc}.7..11.13\)

=> \(\overline{abcabc}⋮7;11;13\)

\(b,\overline{aaa}:a=111\)

\(=>\overline{aaa}⋮a\)

\(c,\overline{abc}⋮\overline{abc}\)

Do \(\overline{abc}=\overline{abc}\)

=> \(\overline{abc}⋮\overline{abc}\)

1 tháng 7 2019

Có: \(x+y\le\sqrt{2\left(x^2+y^2\right)}\)  (dấu bằng xảy ra khi và chỉ khi x=y)

Đặt: \(\hept{\begin{cases}abc=x\\def=y\end{cases}}\)Như vậy x+y đạt GTLN khia và chỉ khi x=y do x không ràng buộc khác y

Thật vậy với x=y thì\(abcdef-defabc=0\)chia hết cho 2010

Vì x,y là 2 số tự nhiên có 3 chữ số khác nhau thức không ràng buộc x khác y

Nên: \(x=y=987\)

Max x+y=\(\sqrt{4\cdot987^2}=1974\)

Không viết đúng không

:v

1 tháng 7 2019

Mình xem đáp án là 1328 với lại mình gõ nhầm;

abcdef là 2 số tự nhiên có 3 chữ số khác nhau. Biết abcdef - defabc chia hết cho 2010. Tìm giá trị lớn nhất của abc + def .