K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 1 2021

Số cách thỏa mãn:

\(C_{10}^3.C_{26}^1.4!=74880\)

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Lời giải:

Có 26 cách chọn ký tự chữ, và 4 cách xếp ký tự chữ. 

Với mỗi cách chọn ký tự chữ, có $10^3$ cách chọn ký tự số. 

Do đó số cách tạo mật mã là: $26.10^3.4=104000$

16 tháng 3 2018

Đáp án C

Số biển số xe là: 36.25.24.10.9.8 = 11232000 biển.

16 tháng 10 2016

1. số tự nhiên có dạng abce ( nhớ gạch trê đầu ( vì đây là số tự nhiên))

*  ta có h là :

        h= mn 

           trong đó tập hợp mn là {0,1}

               => có 2 trường hợp xảy ra 

                (m,n)=(1,0) hoặc (0,1)

*  ta có số tự nhiên abhe có tập hợp {h,2,3,4,5,6,7,8,9}

    a có 9 cách chọn 

b có 8 cách chọn 

c có 7 cách chọn 

e có 6 cách chọn 

vậy có 9*8*7*6=3024 số

 *ta  phải loại trường hợp h  đứng đầu và có dạng 01

 trường hợp h  đứng đầu và có dạng 01 có số cách chọn là :

a có 1 cách chọn  là h

b có 8 cách 

c có 7 cách 

e có 6 cách 

=>  có 1*8*7*6=336 số 

 vậy số tự nhiên theo yêu cầu đề bài có tổng cộng

3024 - 332688 số 

0 chắc

 

 

 

MỌI NGƯỜI GIÚP MÌNH MÔN TIN VỚI Ạ!Cho dãy số (a1, a2, a3, ..., an) là một hoán vị bất kỳ của tập hợp (1, 2, 3, ..., n). Dãy số (b1, b2, b3, ..., bn) gọi là nghịch thế của dãy a nếu bi là số phần tử đứng trước số i trong dãy a mà lớn hơn i.Ví dụ:Dãy a là: 3 2 5 7 1 4 6Dãy b là: 4 1 0 2 0 1 0a. Cho dãy a, hãy xây dựng chương trình tìm dãy b.b. Cho dãy b, xây dựng chương trình tìm dãy a.Dữ liệu vào:...
Đọc tiếp

MỌI NGƯỜI GIÚP MÌNH MÔN TIN VỚI Ạ!

Cho dãy số (a1, a2, a3, ..., an) là một hoán vị bất kỳ của tập hợp (1, 2, 3, ..., n). Dãy số (b1, b2, b3, ..., bn) gọi là nghịch thế của dãy a nếu bi là số phần tử đứng trước số i trong dãy a mà lớn hơn i.

Ví dụ:

Dãy a là: 3 2 5 7 1 4 6

Dãy b là: 4 1 0 2 0 1 0

a. Cho dãy a, hãy xây dựng chương trình tìm dãy b.

b. Cho dãy b, xây dựng chương trình tìm dãy a.

Dữ liệu vào: Trong file NGICH.INP với nội dung:

-Dòng đầu tiên là số n (1 <= n <= 10 000).

-Các dòng tiếp theo là n số của dãy a, mỗi số cách nhau một dấu cách,

-Các dòng tiếp theo là n số của dãy b, mỗi số cách nhau bởi một dấu cách.

Dữ liệu ra: Trong file NGHICH.OUT với nội dung:

-N số đầu tiên là kết quả của câu a

-Tiếp đó là một dòng trống và sau đó là n số kết quả của câu b (nếu tìm được dãy a).

1
3 tháng 11 2021

Người ta nói tần số của một số A trong một dãy số A1, A2, …,An là số lần xuất hiện của số A trong dãy A1,A2,…,An.

Ví dụ: Cho dãy số  2 3 4 5 1 3 3 4 3  

Tần số của số 2 là  1. Tần số của số 3 là  4.

Cho một file văn bản có tên TANSO.INP  và có cấu trúc như sau:

Dòng 1:  Chứa số  nguyên N dương  (0<N<=10000)

N dòng tiếp theo: mỗi dòng chứa một số nguyên  Ai (0<Ai<101), các số ghi cách nhau ít nhất một dấu cách trống.

Hãy viết chương trình đọc file trên và tìm tần số xuất hiện của các số trong N số đã cho.  Yêu cầu chương trình chạy không quá 2 giây.

Kết quả xuất ra file văn bản TANSO.OUT   gồm nhiều dòng. Mỗi dòng chứa 2 số  Ai và Ki ghi cách nhau ít nhất một dấu cách trống. Trong đó Ai là số thuộc dãy, Ki là tần số của  số Ai. Ai được xếp tăng dần từ đầu đến cuối file.

5 tháng 8 2017

Chọn B

Mỗi ai chỉ nhận hai giá trị (0 hoặc 1).

Theo quy tắc nhân số dãy a1, a2, a3, a4, là 2×2×2×2=16

Câu 1: Có bao nhiêu cách sắp xếp 5 người khách gồm 3 nam và 2 nữ ngồi vào một hàng 5 ghế nếu:  a. Họ ngồi chỗ nào cũng được?  b. Nam ngồi kề nhau, nữ ngồi kề nhau?  c. Nam và nữ ngồi xen kẻ nhau?  d. Có 2 người luôn ngồi cạch nhau?Câu 2: Có bao nhiều cách sắp xếp chỗ ngồi cho 5 người khách: a.  Vào 5 ghế xếp thành một dãy sao cho vị khách A luôn ngồi chính giữa b. Vào 5 ghế chung quanh...
Đọc tiếp

Câu 1: Có bao nhiêu cách sắp xếp 5 người khách gồm 3 nam và 2 nữ ngồi vào một hàng 5 ghế nếu:

  a. Họ ngồi chỗ nào cũng được?
  b. Nam ngồi kề nhau, nữ ngồi kề nhau?
  c. Nam và nữ ngồi xen kẻ nhau?
  d. Có 2 người luôn ngồi cạch nhau?
Câu 2: Có bao nhiều cách sắp xếp chỗ ngồi cho 5 người khách:
 a.  Vào 5 ghế xếp thành một dãy sao cho vị khách A luôn ngồi chính giữa
 b. Vào 5 ghế chung quanh một bàn tròm, nếu không có sự phân biệt giữa các ghế này 
Câu 3: Có bao nhiêu cách sắp xếp chỗ ngồi 6 người ngồi vào một dãy 6 ghế hàng ngang nếu:
a. Có 3 người trong số đó muốn ngồi kề nhau
b. Có 2 người trong số đó không muốn ngồi kề nhau
Câu 4: Từ 5 bông vang, 3 bông trắng và 4 bông đỏ( các bông hoa xem như đôi một khác nhau ), ta chọn ra một bó gồm 7 bông:
a. Có bao nhiêu cách chọn ra bó hoa trong đó có đúng một bông đỏ
b. Có bao nhiêu cách chọn ra bó hoa trong đó có ít nhất 3 bông đỏ
c. Có bao nhiêu cách chọn ra bó hoa trong đó có mỗi màu có ít nhất 2 bông

0
1 tháng 12 2019

Đáp án : A

Giả sử mật khẩu là a1a2a3a4a5a6

 Có 26 cách chọn a1

 Có 9 cách chọn a2

 Có 10 cách chọn a3

 Có 10 cách chọn a4

 Có 10 cách chọn a5

 Có 10 cách chọn a6

Vậy theo qui tắc nhân ta có 26.9.10.10.10.10=2340000  mật khẩu.

3 tháng 10 2017

Giải bài tập Toán 11 | Giải Toán lớp 11 Giải bài tập Toán 11 | Giải Toán lớp 11

NV
14 tháng 11 2021

a. Có \(8!\) cách xếp

b. Xếp 2 nữ cạnh nhau: có \(2!\) cách

Coi 2 nữ là 1 bạn, hoán vị với 6 nam, có \(7!\) cách

\(\Rightarrow\) Có \(8!-2!.7!\) cách xếp 2 nữ ko ngồi cạnh nhau

c. CHọn ra 4 em bất kì: \(C_8^4\) cách

Chọn 4 em không có nữ nào: \(C_6^4\) cách

Số cách thỏa mãn yêu cầu: \(C_8^4-C_6^4\)

d. Số cách chọn 3 em (có phân công thứ tự): \(A_8^3\) cách