Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng các hệ số của 1 đa thức f(x) bất kì bằng giá trị của đa thức đó tại x=1
Vậy tổng các hệ số của đa thức
f(x)=(8x2+5x-14)2015.(3x3-10x2+6x+2)2016
=f(1)=(8.12+5.1-14)2015.(3.13-10.12+6.1+2)2016=(-1)2015.12016=(-1).1=-1
a/ Nhân cả 2 vế với a+b+c+d
\(\Rightarrow\frac{a+b+c+d}{a+b+c}+\frac{a+b+c+d}{b+c+d}+\frac{a+b+c+d}{c+d+a}+\frac{a+b+c+d}{d+a+b}=\frac{a+b+c+d}{40}.\)
\(\Rightarrow1+\frac{d}{a+b+c}+1+\frac{a}{b+c+d}+1+\frac{b}{c+d+a}+1+\frac{c}{d+a+b}=\frac{2000}{40}=50\)
\(\Rightarrow S=46\)
\(f\left(x\right)=-x-7x^2+6x^3-3x^4-2x^2-6x+2x^4-1\)
\(f\left(x\right)=-x^4+6x^3-9x^2-7x-1\)
\(\Rightarrow\) Bậc của đa thức là \(4\), hệ số tự do là \(-1\), hệ số cao nhất của đa thức là \(-1\).
\(f\left(x\right)+g\left(x\right)=6x^4-3x^2-5\\ f\left(x\right)-g\left(x\right)=4x^4-6x^3+7x^2+8x-9\\ \Rightarrow2f\left(x\right)=6x^4-3x^2-5+4x^4-6x^3+7x^2+8x-9\\ 2f\left(x\right)=10x^4-6x^3+4x^2+8x-14\\ 2f\left(x\right)=2\left(5x^4-3x^3+2x^2+4x-7\right)\\ \Rightarrow f\left(x\right)=5x^4-3x^3+2x^2+8x-14\)
\(f\left(x\right)+g\left(x\right)=6x^4-3x^2-5\\ \Rightarrow g\left(x\right)=6x^4-3x^2-5-f\left(x\right)\\ g\left(x\right)=6x^4-3x^2-5-5x^4+3x^3-2x^2-8x+14\\ g\left(x\right)=x^4+3x^3-5x^2-8x+9\)
Tổng các hệ số của đa thức f(x) chính bằng f(1)
\(f\left(1\right)=\left(5-6.1+1^2\right)^{2016}.\left(5+6.1+1^2\right)^{2017}=0\)
Nên tổng các hệ số của f ( x) là 0