Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình luôn có 1 nghiệm \(x=1\)
Xét \(x^2+2\left(m+3\right)x+4m+12=0\) (1)
Để pt đã cho có 3 nghiệm thỏa mãn yêu cầu thì (1) có 2 nghiệm pb khác 1 và lớn hơn -1
\(\Rightarrow\left\{{}\begin{matrix}\Delta'>0\\a+b+c\ne0\\-1< x_1< x_2\end{matrix}\right.\)
Ta có: \(\Delta'=m^2+6m+9-4m-12=m^2+2m-3>0\Rightarrow\left[{}\begin{matrix}m< -3\\m>1\end{matrix}\right.\)
\(a+b+c\ne0\Leftrightarrow1+2m+6+4m+12\ne0\Rightarrow m\ne-\frac{19}{6}\)
\(-1< x_1< x_2\Leftrightarrow\left\{{}\begin{matrix}\frac{x_1+x_2}{2}>-1\\\left(x_1+1\right)\left(x_2+1\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2>-2\\x_1x_2+x_1+x_2+1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2\left(m+3\right)>-2\\4m+12-2\left(m+3\right)+1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< -2\\m>-\frac{7}{2}\end{matrix}\right.\) \(\Rightarrow-\frac{7}{2}< m< -2\)
Kết hợp lại ta được: \(\left\{{}\begin{matrix}-\frac{7}{2}< m< -3\\m\ne-\frac{19}{6}\end{matrix}\right.\)
a)
ĐIều kiện (1)\(\Delta>0\Rightarrow\left(m+3\right)^2-4\left(m^2-1\right)\left(m^2+m\right)>0\)
ĐK(2) c/a <0 => (m^2+m)/(m^2-1) <0
Không cần giải đk (1) vì nếu (m) thủa mãn đk(2) tất nhiên thỏa mãn đk(1) do (x+3)^2 >=0
\(\dfrac{m^2+m}{m^2-1}=\dfrac{T}{M}\)
\(-1< m< 0\Rightarrow T< 0\)
\(-1< m< 1\Rightarrow M< 0\)
Để thủa mãn đk (2) cũng là giá trị m cần tìm là: \(\Rightarrow0< m< 1\)
b)
M thả mãn hệ \(\left\{{}\begin{matrix}\left(m^3+m-2\right)^2-4\left(m^2+m-5\right)\left(1\right)\\\left(m^2+m-5\right)< 0\left(2\right)\end{matrix}\right.\)
Tưng tự câu (a) Nếu (2) thủa mãn => ( 1) thỏa mãn
=> \(\left(2\right)\Rightarrow\dfrac{-1-\sqrt{21}}{2}< m< \dfrac{-1+\sqrt{21}}{2}\) cũng là giá trị m cần tìm
a) \(x^2-2x+m^2+m+3=0\)
Xét \(\Delta=1^2-\left(m^2+m+3\right)=-\left(m^2+m+2\right)=\)
\(=-\left(m+\dfrac{1}{2}\right)^2-\dfrac{7}{4}< 0\) với mọi m.
DO đó phương trình luôn vô nghiệm nên không có giá trị nào thỏa mãn.
b)
(1) a khác 0: \(m^2+m+3>0\forall m\)
(2) \(\Delta>0\Rightarrow\left(4m^2+m+2\right)^2-4m\left(m^2+m+3\right)>0\)
\(=16m^4+4m^3+13m^2-8m+4>0\)
(3) \(\dfrac{c}{a}>0\) => m > 0
(4) \(-\dfrac{b}{a}\) \(< 0\) \(\Leftrightarrow\)\(4m^2+m+2< 0\Rightarrow4\left(m+\dfrac{1}{8}\right)^2+\dfrac{31}{16}< 0\) vô lý
Kết luận không có m thỏa mãn đk đầu bài
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2+2\left(m+3\right)x+4m+12=0\left(1\right)\end{matrix}\right.\)
Để pt có 3 nghiệm pb lớn hơn -1 \(\Leftrightarrow\left(1\right)\) có 2 nghiệm pb khác 1 và lớn hơn -1
\(a+b+c\ne0\Rightarrow1+2m+6+4m+12\ne0\Rightarrow m\ne-\frac{19}{6}\)
Để pt có 2 nghiệm pb
\(\Rightarrow\Delta'=\left(m+3\right)^2-4m-12>0\)
\(\Leftrightarrow m^2+2m-3>0\Rightarrow\left[{}\begin{matrix}m>1\\m< -3\end{matrix}\right.\)
Để pt có 2 nghiệm lớn hơn -1 \(\Leftrightarrow-1< x_1< x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\frac{x_1+x_2}{2}>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_2+1>0\\x_1+x_2>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4m+12-2\left(m+3\right)+1>0\\-2\left(m+3\right)>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m+7>0\\m+3< 1\end{matrix}\right.\) \(\Rightarrow-\frac{7}{2}< m< -2\)
Kết hợp lại ta được:
\(\left\{{}\begin{matrix}-\frac{7}{2}< m< -3\\m\ne-\frac{19}{6}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2+2\left(m+3\right)x+4m+12=0\left(1\right)\end{matrix}\right.\)
Để pt đã cho có 3 nghiệm pb lớn hơn -1 \(\Leftrightarrow\left(1\right)\) có 2 nghiệm pb thỏa mãn \(\left\{{}\begin{matrix}x_1;x_2\ne1\\-1< x_1< x_2\end{matrix}\right.\)
\(a+b+c\ne0\Leftrightarrow1+2m+6+4m+12\ne0\Rightarrow m\ne-\frac{19}{6}\)
\(\Delta'=\left(m+3\right)^2-\left(4m+12\right)>0\Leftrightarrow m^2+2m-3>0\Rightarrow\left[{}\begin{matrix}m< -3\\m>1\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+3\right)\\x_1x_2=4m+12\end{matrix}\right.\)
\(-1< x_1< x_2\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\frac{x_1+x_2}{2}>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_2+1>0\\x_1+x_2>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4m+12-2m-6+1>0\\-2\left(m+3\right)>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-\frac{7}{2}\\m< -2\end{matrix}\right.\) \(\Rightarrow-\frac{7}{2}< m< -2\)
Vậy \(\left\{{}\begin{matrix}-\frac{7}{2}< m< -3\\m\ne-\frac{19}{6}\end{matrix}\right.\)
tại sao lại có dòng a + b + c khác 0 ạ?