Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
câu 1:
Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)
có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)
\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)
câu 2 mk k bik lm nha
a, Có \(\Delta'=m^2+1>0\)
Nên pt luôn có 2 nghiệm phân biệt (Không phải nghiệm trái dấu nhá)
Giải thích vì sao ko có nghiệm trái dâu :
Theo Vi-ét có \(\hept{\begin{cases}S=x_1+x_2=-1\\P=x_1.x_2=2m\end{cases}}\)
Vì tích bằng 2m chưa biết âm hay dương nên ko thể KL được
b, Ta có \(\left(x_1-x_2\right)^2+3x_1x_2=7\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=7\)
\(\Leftrightarrow1-2m=7\)
\(\Leftrightarrow m=-3\)
Bạn Incur nhầm vi ét rồi ạ.
\(x^2-2mx-1=0\)
a, \(\Delta'=m^2+1>0\Rightarrow\)Phương trình luôn có hai nghiệm phân biệt.
Ta thấy a.c = 1. (-1)= - 1 <0
Suy ra luôn có nghiệm trái dấu.
b, Theo vi ét ta có: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-1\end{cases}}\)
\((x_1-x_2)^2+3x_1x_2=7\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=7\)
\(\Leftrightarrow4m^2+1=7\Leftrightarrow m^2=\frac{3}{2}\Leftrightarrow m=\pm\frac{\sqrt{6}}{2}\)
a, Để phương trình có 2 nghiệm phân biệt thì
\(\Delta>0< =>\left(-2m\right)^2-4.\left(2m^2-1\right)>0\)
\(< =>4m^2-8m^2+4>0\)
\(< =>-4m^2+4>0\)
\(< =>m< 1\)
b, bạn dùng viet và phân tích 1 xíu là ok
Ta có : \(x^2-2mx+2m^2-1=0\left(a=1;b=-2m;c=2m^2-1\right)\)
a, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)
\(\left(-2m\right)^2-4\left(2m^2-1\right)>0\)
\(\Leftrightarrow4m^2-8m^2+4>0\Leftrightarrow-4m^2+4>0\)
\(\Leftrightarrow-4m^2>-4\Leftrightarrow m< 1\)
b, Theo hệ thức Vi et ta có : \(\hept{\begin{cases}S=x_1+x_2=\frac{-b}{a}=\frac{2m}{1}=2m\\P=x_1x_2=\frac{c}{a}=\frac{2m^2-1}{1}=2m^2-1\end{cases}}\)
Ta có : \(x_1^3-x_1^2+x_2^3-x_2^2=2\)
Ta có thể viết là : \(x_1^3+x_2^3-\left(x_1^2+x_2^2\right)=2\)tương tự vs \(x_1^3+x_2^3-\left(x_1+x_2\right)^2=2\)
\(\Leftrightarrow x_1^3+x_2^3-\left(2m\right)^2=2\Leftrightarrow x_1^3+x_2^3-4m^2=2\)(*)
Phân tích nốt : cái \(x_1^3+x_2^3\)tớ ko biết phân tích thế nào, lm chỉ sợ sai
để phương trình có hai nghiệm \(\Leftrightarrow\Delta'=\left(m+1\right)^2-2\left(m^2+4m+3\right)\ge0\Leftrightarrow-m^2-6m-5\ge0\Leftrightarrow m\in\left[-5;-1\right]\)
b. để phương trình có hia nghiệm thì \(m\in\left[-5;-1\right]\) khi đó \(\hept{\begin{cases}x_1+x_2=-\frac{2\left(m+1\right)}{2}=-m-1\\x_1.x_2=\frac{m^2+4m+3}{2}\end{cases}\Rightarrow M=-m-1-m^2-4m-3=-m^2-5m-4}\)
hay \(M=-\left(m+1\right)\left(m+4\right)=\left(-1-m\right)\left(m+4\right)\le\left(\frac{-1-m+m+4}{2}\right)^2=\frac{9}{4}\)
Dấu bằng xảy ra khi \(-1-m=m+4\Leftrightarrow m=-\frac{5}{2}\)
a) \(\Delta=4m^2-4\left(3m-4\right)=4m^2-12m+16=\left(2m-3\right)^2+7>0\)với mọi m=> pt (1) có nghiệm phân biệt với mọi m
b)áp dụng đ.lí Viét ta có: \(x_1+x_2=2m\); \(x_1.x_2=m^2+3m-4\)
\(x_1^2+x_2^2=\left(x1+x2\right)^2-2x1.x2=4m^2-2\left(m^2+3m-4\right)=4m^2-2m^2-6m+8\)
\(=2\left(m^2+3m-4\right)=2\left[\left(m+\frac{3}{2}\right)^2-4-\frac{9}{4}\right]=2\left[\left(m+\frac{3}{2}\right)^2-\frac{25}{4}\right]\)
A đặt giá trị nhỏ nhất khi m = -3/2
a:
\(\text{Δ}=\left(2m\right)^2-4\left(-3m-2\right)\)
\(=4m^2+12m+8\)
Để PT có 2 nghiệm thì \(m^2+3m+2>=0\)
=>m>=-1 hoặc m<=-2
THeo Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-3m-2\end{matrix}\right.\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}x_1+x_2=-2m\\2x_1-3x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=-4m\\2x_1-3x_2=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{-4m-1}{5}\\x_1=-2m+\dfrac{4m+1}{5}=\dfrac{-6m+1}{5}\end{matrix}\right.\)
Ta có: \(x_1x_2=-3m-2\)
\(\Leftrightarrow\left(4m+1\right)\left(6m-1\right)=25\left(-3m-2\right)\)
\(\Leftrightarrow24m^2-4m+6m-1=-75m-50\)
\(\Leftrightarrow24m^2+77m+49=0\)
\(\text{Δ}=77^2-4\cdot24\cdot49=1225>0\)
Do đó: PT có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{-77-35}{48}=\dfrac{-7}{3}\left(nhận\right)\\m_2=\dfrac{-77+35}{48}=-\dfrac{7}{8}\left(loại\right)\end{matrix}\right.\)
b: \(\text{Δ}=\left(4m\right)^2-4\left(4m^2-m\right)=16m^2-16m^2+4m=4m\)
Để PT có hai nghiệm thì 4m>=0
hay m>=0
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}x_1=3x_2\\x_1+x_2=4m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_2=4m\\x_1=3x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=m\\x_1=3m\end{matrix}\right.\)
Ta có: \(x_1x_2=4m^2-m\)
\(\Leftrightarrow4m^2-m=3m^2\)
\(\Leftrightarrow m\left(m-1\right)=0\)
=>m=0 hoặc m=1