Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) Ta có: x=1là nghiệm của đa thức trên => a*1^2 + 2*1 -1=a+2-1=0
=>a=-1
c)Ta có :x=1 là nghiệm của đa thức trên=>1^2 +a*1 -3=1+a-3=0
=>a=2
b) Ta có : x=1 là nghiệm của đa thức trên=>1^2 +2*1-a=1-2-a=0
=>a=-1
a) \(ax^2+2x-1=a\left(x^2+\frac{2}{a}x\right)-1\)
\(\Leftrightarrow a\left(x^2+2x.\frac{1}{a}+\left(\frac{1}{a}\right)^2\right)-\frac{1}{a}-1\)
\(\Leftrightarrow a\left(x+\frac{1}{a}\right)^2-\frac{1}{a}-1\)
Để phương trình có 1 nghiệm \(\Leftrightarrow-\frac{1}{a}-1=0\Rightarrow a=-1\)
b)\(x^2+ax-3=x^2+2x\frac{a}{2}+\left(\frac{a}{2}\right)^2-\left(\frac{a}{2}\right)^2-3\)
\(\left(x+\frac{a}{2}\right)^2-\frac{a^2}{4}-3\)
Để phương trình có 1 nghiệm \(\Leftrightarrow-\frac{a^2}{4}-3=0\Leftrightarrow a^2=-12\) ( vô lý)
Không tồn tại hệ số a để phương trình có 1 nghiệm
c) \(x^2+5x+a=x^2+2x\frac{5}{2}+\left(\frac{5}{2}\right)^2-\left(\frac{5}{2}\right)^2+a\)
\(\Leftrightarrow\left(x+\frac{5}{2}\right)^2+a-\frac{25}{4}\)
Để phương trình có 1 nghiệm \(\Leftrightarrow a-\frac{25}{4}=0\Leftrightarrow a=\frac{25}{4}\)
Bài 1:
* \(f\left(x\right)=2xa^2+2ax+4\)
\(\Rightarrow f\left(1\right)=2.1.a^2+2a.1+4=4\)
\(\Rightarrow2a^2+2a+4=4\)
\(\Rightarrow2a^2+2a=0\)
\(\Rightarrow2a\left(a+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2a=0\\a+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=0\\a=-1\end{matrix}\right.\)
* \(g\left(x\right)=x^2-5x-b\)
\(\Rightarrow g\left(5\right)=5^2-5.5-b=5\)
\(\Rightarrow-b=5\)
\(\Rightarrow b=-5\)
a,ta có:
f(1)= a.12+2.1+b=0
=> a+2+b=0
=> a+b=-2 (1)
f(-2)= a.(-2)2+2.(-2)+b=0
=> 4a - 4 + b=0
=> 4a+b=4 (2)
Trừ vế (2) cho vế (1) ,ta có:
3a=6
=>a= 2
thay a =2 vào (1), ta có: 2+b=-2 => b= -4
Vậy a=2, b=-4
b,Do g(x) có 2 nghiệm 1 và -1 nên:
g(1)=3.13 + a.12+b.1+c = 0
=> 3+a+b+c =0
=> a+b+c = -3 (1)
g(-1) = 3. (-1)3+a.(-1)2+b(-1)+c=0
=> -3 +a -b+c =0
=> a-b+c=3 (2)
Trừ vế (1) cho vế (2), ta có:
2b=-6
=> b=-3
thay b=-3 vào (1), ta có:
a-3+c=-3
=> a+c=0
=> a+ 2a +1=0
=> 3a=-1
=> a= \(-\frac{1}{3}\)
Khi đó ta có: \(-\frac{1}{3}+c=0\Rightarrow c=\frac{1}{3}\)
Vậy:...
a) ta có: x=2 là nghiệm của A(x)
=> A(2) = 22 + a.2 + b =0
=> 4 + a.2 + b =0
=> b = -4 - a.2
ta có: x = 3 là nghiệm của A(x)
=> A(3) = 32 +a.3 + b = 0
=> 9+ a.3 + b = 0
thay số: 9+ a.3 - 4-2.a = 0
( 9-4) + (a.3-2.a) = 0
5 + a = 0
=> a = -5
mà b = 4-a.2 = 4 - (-5).2 = 4 + 10 = 14
=> b = 14
KL: a = -5; b= 14
phần b bn lm tương tự nha!
a; Để 1 là nghiệm của A(\(x\)) = a\(x^2\) + 2\(x\) - 1 thì A(1) = 0
Thay \(x\) = 1 vào biểu thức A(\(x\)) = a\(x^2\) + 2\(x\) - 1 = 0 ta có:
a.12 + 2.1 - 1 = 0
a + 2 - 1 = 0
a + 1 = 0
a = - 1
Vậy để A = a\(x^2\) + 2\(x\) - 1 nhận 1 là nghiệm thì a = -1
b; B(\(x\)) = \(x^{2^{ }}\) + a\(x\) - 3 nhận 1 là nghiêm khi và chỉ khi
B(1) = 0
Thay \(x\) = 1 vào biểu thức B(\(x\)) = \(x^2\) + a\(x\) - 3 = 0 ta có
B(1) = 12 + a.1 - 3 = 0
1 + a - 3 = 0
a - 2 = 0
a = 2
Vậy với a = 2 thì biểu thức B(\(x\)) = \(x^{^{ }2}\) + a\(x\) - 3 nhận 1 là nghiệm.