Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo nha bạn : http://lazi.vn/edu/exercise/xac-dinh-cac-hang-so-a-va-b-sao-cho-x4-ax-b-chia-het-cho-x2-4-x4-ax-bx-1-chia-het-cho-x2-1
â) viết lại biểu thức bên trái = (x2+5x-3)(x2-2x-4)+(14+a)x+b-12
Để là phép chia hết thì số dư =0
Số dư chính là (14+a)x+b-12=0 => a+14=0 và b-12=0 <=>a=-14 và b=12
b) làm tương tự phân tích vế trái thành (x3-2x2+4)(x2+9x+18)+(a+32)x2+(b-36)x
số dư là (a+32)x2+(b-36)x=0 =>a=-32 và b=36
c) Tương tự (x2-1)4x+(a+4)x+b
số dư là (a+4)x+b =2x-3 =>a+4=2 và b=-3 <=>a=-2 và b=-3
a: \(\dfrac{2x^3-x^2+ax+b}{x^2-1}\)
\(=\dfrac{2x^3-2x-x^2+1+\left(a+2\right)x+b-1}{x^2-1}\)
\(=2x-1+\dfrac{\left(a+2\right)x+b-1}{x^2-1}\)
Để đây là phép chia hết thì a+2=0 và b-1=0
=>a=-2; b=1
b: \(\Leftrightarrow x^4-1+ax^2-a+bx+a⋮x^2-1\)
=>bx+a=0
=>a=b=0
Sưu tầm phần a và c
a) Áp dụng định lí Be- du ta có: f(a) = r
=> \(\left\{{}\begin{matrix}r=f\left(2\right)\\r=f\left(-2\right)\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}f\left(2\right)=0\\f\left(-2\right)=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}16+2a+b=0\\16-2a+b=0\end{matrix}\right.\)
Trừ vế theo vế : 4a = 0 => a = 0 => b = -16
b) Áp dụng định lí Be- du ta có: f(a) = r
=> \(\left\{{}\begin{matrix}r=f\left(1\right)\\r=f\left(-1\right)\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(-1\right)=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}a+b-1+1=0\\-a-b+1-1=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a+b=0\\-a-b=0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)
c) Lm giống ở dưới vì câu này khó áp dụng định lí Be - du