\(\left\{{}\begin{matrix}x=2+mt\\y=1-2t\en...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

a)\(\Rightarrow d:4x+5y+14=0\)

\(d':4x+5y+14=0\)

Ta có: \(\dfrac{4}{4}=\dfrac{5}{5}=\dfrac{14}{14}\) \(\Rightarrow d\equiv d'\)

b) \(\Rightarrow d:x+2y-5=0\)

Ta có: \(\dfrac{1}{2}=\dfrac{2}{4}=\dfrac{-5}{-10}\) \(\Rightarrow d\equiv d'\)

c) Ta có: \(\dfrac{1}{2}\ne\dfrac{1}{1}\) \(\Rightarrow d\) cắt \(d'\)

AH
Akai Haruma
Giáo viên
26 tháng 5 2020

Lời giải:

Đường thẳng $(d_1)$ có VTCP là \(\overrightarrow{u_1}=(-\sqrt{2}; \sqrt{2})\)

Đường thẳng $(d_2)$ có VTCP là \(\overrightarrow{u_2}=(-2;2)\)

\(\Rightarrow \overrightarrow{u_2}=\sqrt{2}.\overrightarrow{u_1}(1)\)

Gọi $A(2,2)$ thuộc $(d_1)$

Thay tọa độ điểm $A$ vào $(d_2)$ ta thấy không thỏa mãn nên $A\not\in (d_2)(2)$

Từ $(1);(2)\Rightarrow (d_1); (d_2)$ song song với nhau.

NV
5 tháng 3 2019

\(x^2+y^2-2x-4y-11=0\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2-16=0\)

Thay tọa độ dạng tham số của d vào pt (C) ta được:

\(\left(1+2t-1\right)^2+\left(-2+t-2\right)^2-16=0\)

\(\Leftrightarrow4t^2+\left(t-4\right)^2-16=0\Leftrightarrow5t^2-8t=0\)

\(\Leftrightarrow t\left(5t-8\right)=0\Rightarrow\left[{}\begin{matrix}t=0\\t=\frac{8}{5}\end{matrix}\right.\) \(\Rightarrow d\) cắt (C) tại 2 điểm A; B

Thay t vào pt đường thẳng d ta được tọa độ 2 giao điểm

\(A\left(1;-2\right)\)\(B\left(\frac{21}{5};\frac{-2}{5}\right)\)

NV
4 tháng 6 2020

\(\Delta_1\) có 1 vtcp là \(\left(m^2+1;-m\right)\)

\(\Delta_2\) có 1 vtcp là \(\left(-3;-4m\right)\)

Hai đường thẳng vuông góc khi và chỉ khi tích vô hướng 2 vtcp bằng 0

\(\Leftrightarrow-3\left(m^2+1\right)+4m^2=0\)

\(\Leftrightarrow m^2=3\Rightarrow m=\pm\sqrt{3}\)

NV
1 tháng 6 2020

Pt của d1 dạng tổng quát:

\(2\left(x-1\right)-1\left(y+3\right)=0\Leftrightarrow2x-y-5=0\)

Pt d2 dạng tổng quát:

\(1\left(x-1\right)-2\left(y-1\right)=0\Leftrightarrow x-2y+1=0\)

Tọa độ I là nghiệm: \(\left\{{}\begin{matrix}2x-y-5=0\\x-2y+1=0\end{matrix}\right.\) \(\Rightarrow I\left(\frac{11}{3};\frac{7}{3}\right)\)

b/ d' vuông góc d1 nên nhận \(\left(1;2\right)\) là 1 vtpt và \(\left(2;-1\right)\) là 1 vtcp

Phương trình tổng quát:

\(1\left(x-\frac{11}{3}\right)+2\left(y-\frac{7}{3}\right)=0\Leftrightarrow3x+6y-25=0\)

Pt tham số: \(\left\{{}\begin{matrix}x=\frac{11}{3}+2t\\y=\frac{7}{3}-t\end{matrix}\right.\)

Đề câu sau thiếu