Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\hept{\begin{cases}\left(a+1\right)x-y=3\\y=a-ax\end{cases}}\)
Thay y=a-ax vào pt đầu,ta có
\(\left(a+1\right)x-a+ax=3\)
\(\Leftrightarrow ax+x-a+ax=3\)
\(\Leftrightarrow\)2ax+x=a+3
\(\Leftrightarrow\)x(2a+1)=a+3
Dể hpt có nghiệm duy nhất thì 2a+1\(\ne\)0
\(\Leftrightarrow\)a\(\ne\)\(\frac{-1}{2}\)
\(\Rightarrow\)\(x=\frac{a+3}{2a+1}\)
Mà y=a-ax
\(\Rightarrow y=\frac{a^2-2a}{2a+1}\)
Để x+y>0 thì\(\frac{a+3}{2a+1}+\frac{a^2-2a}{2a+1}=\frac{a^2-a+3}{2a+1}=\frac{\left(a-\frac{1}{2}\right)^2+\frac{11}{4}}{2a+1}\)
Vì tử số >0 nên để x+y>0 thì 2a+1>0
\(\Rightarrow a>-\frac{1}{2}\left(tm\right)\)
Vậy để hpt có nghiệm duy nhất tm x+y>0 thì a>\(-\frac{1}{2}\)
Đặt S=x+y, P=x.y
Ta có:S=2a-1, x^2+y^2=S^2-2P=a^2+2a-3
\Rightarrow P=\frac{1}{2}[(2a-1)^2-(a^2+2a-3)]=\frac{1}{2}(3a^2-6a+4)
Trước hết tìm a để hệ có nghiệm.
Điều kiện để hệ có nghiệm:S^2-4P \geq 0 \Leftrightarrow (2a-1)^2-2(3a^2-6a+4)\geq 0
\Leftrightarrow -2a^2+8a-7 \geq 0 \leftrightarrow 2-\frac{\sqrt{2}}{2} \leq a \leq 2+\frac{\sqrt{2}}{2} (1)
Tìm a để P=\frac{1}{2}(3a^2-6a+4) đạt giá trị nhỏ nhất trên đoạn
[2-\frac{\sqrt{2}}{2} ;2+\frac{\sqrt{2}}{2}]
Ta có hoành độ đỉnh a_0=\frac{6}{2.3}=1Parabol có bề lõm quay lên do đó \min P=P(2-\frac{\sqrt{2}}{2} )$
Vậy với a=2-\frac{\sqrt{2}}{2} thì xy đạt giá trị nhỏ nhất.
Vì pt có nghiệm \(\left(x;y\right)=\left(2;-1\right)\)
Nên thế x=2 và y=-1 vào hpt
\(\hept{\begin{cases}6a-2b=5\\8+b=7\end{cases}\Leftrightarrow}\hept{\begin{cases}6a-2b=5\\b=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}a=\frac{1}{2}\\b=-1\end{cases}}\)
\(b,\hept{\begin{cases}4\left(x+y\right)=5\left(x-y\right)\\\frac{40}{x+y}+\frac{40}{x-y}=9\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4\left(x+y\right)^2\left(x-y\right)-5\left(x-y\right)^2\left(x+y\right)=0\\40\left(x-y\right)+40\left(x+y\right)-9\left(x-y\right)\left(x+y\right)=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(x^2-y^2\right)\left[4\left(x+y\right)-5\left(x-y\right)\right]=0\\80x-9\left(x^2-y^2\right)=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(x+y\right)\left(x-y\right)\left(9y-x\right)=0\\9\left(\frac{80}{9}x-x^2+y^2\right)=0\end{cases}}\)
\(\Rightarrow.......\)
Hệ pt \(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x+\left(m-1\right)y=2\left(1\right)\\\left(m+1\right)x-y=m+1\left(2\right)\end{cases}}\)
Nếu \(m+1=0\Rightarrow m=-1\Rightarrow\hept{\begin{cases}-2y=2\\-y=0\end{cases}\left(ktm\right)}\)
Nếu \(m+1\ne0\Rightarrow m^2y=m+1\Rightarrow y=\frac{m+1}{m^2}\Rightarrow x=2-\left(m-1\right)y\)
\(\Rightarrow x=2-\frac{\left(m-1\right)\left(m+1\right)}{m^2}=\frac{m^2+1}{m^2}\)
Yêu cầu bài toán \(\Leftrightarrow\frac{m^2+1}{m^2}>\frac{m+1}{m^2}\Rightarrow\frac{m^2-m}{m^2}>0\Rightarrow m^2-m>0\Rightarrow\orbr{\begin{cases}m< 0\\m>1\end{cases}}\)
Vậy với \(\orbr{\begin{cases}m< 0\\m< 1\end{cases};m\ne-1}\)thì .....
a/ \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
\(\Rightarrow\left(x+y\right)\left(m+1\right)=3m+1\)
\(\Leftrightarrow\left(x+y\right)=\frac{3m+1}{m+1}=3-\frac{2}{m+1}\)
Vì x, y nguyên nên (m + 1) phải là ước nguyên của 2.
b/ \(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x+my=2m-1\left(1\right)\\y=mx-m^2+2\left(2\right)\end{cases}}\)
\(\Rightarrow\left(2\right)\Leftrightarrow\left(m+1\right)x+m\left(mx-m^2+2\right)=2m-1\)
\(\Leftrightarrow\left(m^2+m+1\right)\left(x-m+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=m-1\\y=2-m\end{cases}}\)
\(\Rightarrow A=\left(m-1\right)\left(2-m\right)=-m^2+3m-2\le\frac{1}{4}\)