Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vậy thì kết quả là
\(\sin2\alpha=-0.96\)
\(\)còn \(\cos\left(\alpha+\frac{\pi}{6}\right)\) thì đúng vì -(-0.8) mà sorry thiếu ngủ hôm qua -_-
\(A=1-cos^2x+2cosx+1=3-\left(cosx-1\right)^2\le3\)
\(A_{max}=3\) khi \(cosx=1\)
\(B=1-sin^2x-2sin^2x-3=-1-\left(sinx+1\right)^2\le-1\)
\(B_{max}=-1\) khi \(sinx=-1\)
\(A=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{x}{2}-1\right)}}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{cos^2\frac{x}{2}}}}=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{x}{2}}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{x}{4}-1\right)}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{cos^2\frac{x}{4}}}=\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{x}{4}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{x}{8}-1\right)}=\sqrt{cos^2\frac{x}{8}}=cos\frac{x}{8}\)
\(B=\sqrt{2+\sqrt{2+\sqrt{2+2\left(2cos^2\frac{a}{2}-1\right)}}}\)
\(=\sqrt{2+\sqrt{2+\sqrt{4cos^2\frac{a}{2}}}}=\sqrt{2+\sqrt{2+2cos\frac{a}{2}}}\)
\(=\sqrt{2+\sqrt{2+2\left(cos^2\frac{a}{4}-1\right)}}=\sqrt{2+\sqrt{4cos^2\frac{a}{4}}}\)
\(=\sqrt{2+2cos\frac{a}{4}}=\sqrt{2+2\left(2cos^2\frac{a}{8}-1\right)}=2cos\frac{a}{8}\)
\(1+\cot^2a=\dfrac{1}{\sin^2a}=1+\dfrac{1}{4}=\dfrac{5}{4}\)
\(\Leftrightarrow\sin^2a=\dfrac{4}{5}\)
hay \(\sin a=-\dfrac{2\sqrt{5}}{5}\left(\Pi< a< \dfrac{3\Pi}{2}\right)\)
=>\(\cos a=-\dfrac{\sqrt{5}}{5}\)
\(\sin^2a\cdot\cos a=\dfrac{4}{5}\cdot\dfrac{-\sqrt{5}}{5}=\dfrac{-4\sqrt{5}}{25}\)
Do \(\frac{\pi}{2}< a< \pi\Rightarrow cosa< 0\)
\(\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{2\sqrt{6}}{5}\)
\(tana=\frac{sina}{cosa}=-\frac{\sqrt{6}}{12}\); \(cota=\frac{1}{tana}=-2\sqrt{6}\)
Bài 1:
\(A=\left(1+sinx\right)\left(1-sinx\right)tan^2x=\left(1-sin^2x\right).\frac{sin^2x}{cos^2x}=cos^2x.\frac{sin^2x}{cos^2x}=cos^2x\)
\(B=cot^2x-sin^2x.cot^2x+1-cot^2x=1-sin^2x.\frac{cos^2x}{sin^2x}=1-cos^2x=sin^2x\)
\(C=tan^2x+2+\frac{1}{tan^2x}-\left(tan^2x-2+\frac{1}{tan^2x}\right)=2+2=4\)
Bài 2:
Đề yêu cầu tính giá trị lượng giác nào bạn? sin?cos?tan?cot?
Không hỏi thì làm sao mà biết cần tính gì
\(6sin^4x-2cos^4x=1\Leftrightarrow6sin^4x-2\left(1-sin^2x\right)^2-1=0\)
\(\Leftrightarrow6sin^4x-2\left(sin^4x-2sin^2x+1\right)-1=0\)
\(\Leftrightarrow4sin^4x+4sin^2x-3=0\)
\(\Leftrightarrow\left(2sin^2x+3\right)\left(2sin^2x-1\right)=0\)
\(\Leftrightarrow2sin^2x=1\Rightarrow sin^2x=\frac{1}{2}\Rightarrow cos^2x=\frac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}sin^4x=\frac{1}{4}\\cos^4x=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow C=\frac{1}{4}+3.\frac{1}{4}=1\)
Do \(\pi< \alpha< \dfrac{3\pi}{2}\) nên \(sin\alpha,cos\alpha< 0;tan\alpha,cot\alpha< 0\).
\(cos\left(\alpha-\dfrac{\pi}{2}\right)=cos\left(\dfrac{\pi}{2}-\alpha\right)=sin\alpha< 0\).
\(sin\left(\dfrac{\pi}{2}+\alpha\right)=cos\alpha< 0\).
\(tan\left(\dfrac{3\pi}{2}-\alpha\right)=tan\left(\dfrac{3\pi}{2}-\alpha-2\pi\right)\)\(=tan\left(-\dfrac{\pi}{2}-\alpha\right)\)\(=-tan\left(\dfrac{\pi}{2}+\alpha\right)=cot\left(\alpha\right)>0\).
\(cot\left(\alpha+\pi\right)=cot\left(\alpha\right)>0\).
1/ Vì \(\pi< \alpha< \frac{3}{2}\pi\)
\(\Rightarrow\)\(\alpha\in\) góc phần tư thứ 3\(\Rightarrow\sin\alpha< 0;\cos\alpha< 0;\cot\alpha>0\)
2/ Xét 3 trường hợp:
TH1: \(0^0< \alpha< 90^0\) \(\Rightarrow\alpha\in\) góc phần tư thứ nhất\(\Rightarrow\sin\alpha>0;\cos\alpha>0;\cot\alpha>0\)
TH2: \(-90^0< \alpha< 0^0\Rightarrow\alpha\in\) góc phần tư thứ tư
\(\Rightarrow\sin\alpha< 0;\cos\alpha>0;\cot\alpha< 0\)
TH3: \(-170^0< \alpha< -90^0\)\(\Rightarrow\alpha\in\) góc phần tư thứ ba
\(\Rightarrow\sin\alpha< 0;\cos\alpha< 0;\cot\alpha>0\)
3/ Vì...=> \(\alpha\in\) góc phần tư thứ ba
\(\Rightarrow...\)
cảm ơn b