Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left(ax+b\right)\left(x^2-x-1\right)=ax^3+cx^2-1\)
\(\Leftrightarrow ax^3+\left(b-a\right).x^2-\left(a+b\right).x-b\)
\(=ax^3+cx^2-1\)
\(\Leftrightarrow\hept{\begin{cases}b-a=c\\a+b=0\\b=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=-1\\b=1\\c=2\end{cases}}\)
Vậy ...
â) viết lại biểu thức bên trái = (x2+5x-3)(x2-2x-4)+(14+a)x+b-12
Để là phép chia hết thì số dư =0
Số dư chính là (14+a)x+b-12=0 => a+14=0 và b-12=0 <=>a=-14 và b=12
b) làm tương tự phân tích vế trái thành (x3-2x2+4)(x2+9x+18)+(a+32)x2+(b-36)x
số dư là (a+32)x2+(b-36)x=0 =>a=-32 và b=36
c) Tương tự (x2-1)4x+(a+4)x+b
số dư là (a+4)x+b =2x-3 =>a+4=2 và b=-3 <=>a=-2 và b=-3
1 ) Ta có :
\(ax+2x+ay+2y+4\)
\(=x\left(a+2\right)+y\left(a+2\right)+4\)
\(=\left(x+y\right)\left(a+2\right)+4\)
\(=\left(a-2\right)\left(a+2\right)+4\) ( do \(x+y=a-2\) )
\(=a^2-4+4\)
\(=a^2\left(đpcm\right)\)
2 ) \(\left(ax+b\right)\left(x^2-x-1\right)=ax^3+cx^2-1\)
\(\Leftrightarrow ax^3+bx^2-ax^2-bx-ax-b=ax^3+cx^2-1\)
\(\Leftrightarrow ax^3+x^2\left(b-a\right)-\left(b+a\right)x-b=ax^3+x^2c-0.x-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}b-a=c\\b+a=0\\b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-a=c\\1+a=0\\b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-a=c\\a=-1\\b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}c=2\\a=-1\\b=1\end{matrix}\right.\)
Vậy \(a=-1;b=1;c=2\)
Ta có:
\(ax+2x+ay+2y+4\)
\(=\left(ax+ay\right)+\left(2x+2y\right)+4\)
\(=a\left(x+y\right)+2\left(x+y\right)+4\)
\(=\left(x+y\right)\left(a+2\right)+4\)
Thay \(x+y=a-2\), ta được
\(=\left(a-2\right)\left(a+2\right)+4\)
\(=a^2-4+4\)
\(=a^2\)
a: \(\dfrac{2x^3-x^2+ax+b}{x^2-1}\)
\(=\dfrac{2x^3-2x-x^2+1+\left(a+2\right)x+b-1}{x^2-1}\)
\(=2x-1+\dfrac{\left(a+2\right)x+b-1}{x^2-1}\)
Để đây là phép chia hết thì a+2=0 và b-1=0
=>a=-2; b=1
b: \(\Leftrightarrow x^4-1+ax^2-a+bx+a⋮x^2-1\)
=>bx+a=0
=>a=b=0
a: =>6x^2+2xb-15x-5b=ax^2+x+c
=>6x^2+x(2b-15)-5b=ax^2+x+c
=>a=6; 2b-15=1; -5b=c
=>a=6; b=8; c=-40
b: =>ax^3-ax^2-ax+bx^2-bx-b=ax^3+cx^2-1
=>x^2(-a+b)+x(-a-b)-b=cx^2-1
=>-b=-1; -a+b=c; -a-b=0
=>b=1; c=b-a; a=-b=-1
=>c=b-a=1-(-1)=2; b=1; a=-1