K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2015

Đây là phương pháp đồng nhất hạng tử (cách này hơi khó hiểu vì dành cho lớp chuyên toán hoặc đội tuyển)

sau khi lấy x4+ax+b chia cho x2-1 ta được x2+1 dư ax+b+1

ta có x4+ax+b = (x2-1)(x2+cx+d)

=>x4+ax+b=x4+cx3+dx2-x2-cx-d

Tương đương bậc của 2 bên ( ko cần ghi bậc chỉ cần ghi hệ số)

x=x=> 0

0x=cx3 => c=0

0x2=(d-1)x2  => d-1 = 0 ( lấy x2 chung)

ax=-cx => a=-c

b=-d

Từ những điều trên ta kết luận 

a=0 (a=-c mà c=0)

b=1 (b=-d mà d=1)

 

 

a: \(\Leftrightarrow10x^2-15x+8x-12+a+12⋮2x-3\)

=>a+12=0

hay a=-12

b: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4a-32-4a+28⋮x+4\)

=>-4a+28=0

=>a=7

c: \(\Leftrightarrow2x^3-2x-x^2+1+\left(a+2\right)x+b-1⋮x^2-1\)

=>a+2=0 và b-1=0

=>a=-2 và b=1