K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2017

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

55555555555555555

666666666666666666666666666

88888888888888888888

16 tháng 8 2017

a) gọi Q(x) là thương khi chia f(x) cho g(x)

khi đó ta có dạng: f(x)=g(x).Q(x)=> f(x)=(x+3)(Q(x)   (1)

Vì (1) luôn đúng vs mọi x nên thay x=-3 vào (1) ta đc:

f(-3)= \(\left(-3\right)^3+3.\left(-3\right)^2+5.\left(-3\right)+a=0\) 0

    <=> \(-15+a=0\)

<=>a=15

Vậy vs a=15 thì f(x) chia hết cho g(x)

13 tháng 3 2016

Bài  \(4a!\)

Ta có:

\(2x^2+y^2+2xy-2x+2y+5=0\)

\(\Leftrightarrow\)  \(x^2+2xy+y^2+2x+2y+x^2-4x+5=0\)

\(\Leftrightarrow\)  \(\left(x+y\right)^2+2\left(x+y\right)+1+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\)  \(\left(x+y+1\right)^2+\left(x-2\right)^2=0\)   \(\left(\text{*}\right)\)

Vì  \(\left(x+y+1\right)^2\ge0\)  và  \(\left(x-2\right)^2\ge0\)  với mọi  \(x,y\)

nên từ  \(\left(\text{*}\right)\)  \(\Rightarrow\)   \(\left(x+y+1\right)^2=0\)   \(V\)   \(\left(x-2\right)^2=0\)  

                    \(\Leftrightarrow\)    \(x+y+1=0\)   \(V\)   \(x-2=0\)

                    \(\Leftrightarrow\)    \(x+y=-1\)   \(V\)  \(x=2\)

                    \(\Leftrightarrow\)    \(x=2\)  và  \(y=-3\)

Vậy,  cặp số cần tìm là  \(\left(x;y\right)=\left(2;-3\right)\)

13 tháng 3 2016

Bài \(3a.\)

Vì  \(xy=13\)  nên  \(xy+1=14\)

Từ giả thiết suy ra  \(xy\left(x+y\right)+x+y=2016\)

                     \(\Leftrightarrow\)  \(\left(x+y\right)\left(xy+1\right)=2016\)

                     \(\Leftrightarrow\)  \(x+y=144\) 

               Khi đó,  \(\left(x+y\right)^2=144^2=20736\)

                     \(\Leftrightarrow\)  \(x^2+2xy+y^2=20736\)

                     \(\Leftrightarrow\)  \(x^2+y^2=20736-2xy=20736-26=20710\)

\(b,c\)  tối giải cho 

Bài  \(4a.\)  tối giải!

22 tháng 7 2020

f(-1)=1-a+b; f(0)=b; f(1)=1+a+b

theo giả thiết có: \(\hept{\begin{cases}\frac{-1}{2}\le b\le\frac{1}{2}\left(1\right)\\\frac{-1}{2}\le1-a+b\le\frac{1}{2}\Leftrightarrow\frac{-3}{2}\le-a+b\le\frac{-1}{2}\left(2\right)\\\frac{-1}{2}\le1+a+b\le\frac{1}{2}\Leftrightarrow\frac{-3}{2}\le a+b\le\frac{-1}{2}\left(3\right)\end{cases}}\)

cộng theo từng vế của (2) và (3) có: \(\frac{-3}{2}\le b\le\frac{-1}{2}\left(4\right)\)

từ (1) và (4) ta có: \(b=\frac{-1}{2}\), thay vào (2) và (3) ta được a=0

vậy đa thức cần tìm là \(f\left(x\right)=x^2-\frac{1}{2}\)

22 tháng 7 2020

+)\(\left|f\left(x\right)\right|\le\frac{1}{2}\Leftrightarrow-\frac{1}{2}\le f\left(x\right)\le\frac{1}{2}\)

+)\(x^2+ax+b=x^2+2\cdot\frac{a}{2}\cdot x+b+\frac{a^2}{4}-\frac{a^2}{4}+b=\left(x+\frac{a}{2}\right)^2+b-\frac{a^2}{4}\)

\(\ge b-\frac{a^2}{4}=-\frac{1}{2}\)

+)\(f\left(x\right)\)có đồ thị quay lên nên đạt giá trị lớn nhất khi x=1 hoặc x=-1
+) Khi x=1 thì \(a+b+1=\frac{1}{2}\Leftrightarrow a+b=-\frac{1}{2}\)

+) Khi x=-1 thì \(b-a+1=\frac{1}{2}\Leftrightarrow b-a=-\frac{1}{2}\)

+) TH1: \(\hept{\begin{cases}a+b=-\frac{1}{2}\\b-\frac{a^2}{4}=-\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=-\frac{1}{2}\end{cases}}}\)

+) TH2: \(\hept{\begin{cases}b-a=-\frac{1}{2}\\b-\frac{a^2}{4}=-\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=-\frac{1}{2}\end{cases}}}\)

Vậy a=0, b=1/2

P/s: Bài này mình không chắc chắn lắm nhé!

20 tháng 11 2022

Bài 3:

\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^4+ax^2+b}{x^2-3x+2}\)

\(=\dfrac{x^4-3x^3+2x^2+3x^3-9x^2+6x+\left(a+7\right)x^2-3x\left(a+7\right)+2\left(a+7\right)+x\left(-6+3a+7\right)+b-2a-14}{x^2-3x+2}\)

Để đây là phép chia hết thì 3a+1=0 và b-2a-14=0

=>a=-1/3; b=2a+14=-2/3+14=40/3

NV
31 tháng 1 2019

1/ \(P\left(x\right)=x^3-3x^2+5x-2a\)

Để \(P\left(x\right)\) chia hết cho \(x-2\) thì \(P\left(2\right)=0\)

\(\Leftrightarrow8-12+10-2a=0\Leftrightarrow a=3\)

2/Thực hiện phép chia đa thức ta được:

\(x^4-3x^2+ax+b=\left(x^2-3x+4\right)\left(x^2+3x+2\right)+\left(a-6\right)x+b-8\)

Để \(x^4-3x^2+ax+b\) chia hết \(x^2-3x+4\)

\(\Rightarrow\left\{{}\begin{matrix}a-6=0\\b-8=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=6\\b=8\end{matrix}\right.\)

3/ \(\dfrac{a}{x-2}+\dfrac{b}{x+3}=\dfrac{a\left(x+3\right)+b\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}=\dfrac{\left(a+b\right)x+3a-2b}{\left(x-2\right)\left(x+3\right)}\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=5\\3a-2b=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\)

4/ \(\dfrac{a}{x-1}+\dfrac{b}{\left(x-1\right)^2}=\dfrac{a\left(x-1\right)+b}{\left(x-1\right)^2}=\dfrac{ax+b-a}{\left(x-1\right)^2}\)

\(\Rightarrow\left\{{}\begin{matrix}a=3\\b-a=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=8\end{matrix}\right.\)