Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Câu8\)
\(a,A=\dfrac{1}{2}x^3\times\dfrac{8}{5}x^2=\left(\dfrac{1}{2}\times\dfrac{8}{5}\right)x^{3+2}=\dfrac{4}{5}x^5\)
b, \(P\left(0\right)=0^2-5.0+6=6\\ P\left(2\right)=2^2-5.2+6=0\)
Câu 9
\(a,A\left(x\right)+B\left(x\right)=5x^3+x^2-3x+5+5x^3+x^2+2x-3\\ =\left(5x^3+5x^3\right)+\left(x^2+x^2\right)+\left(-3x+2x\right)+\left(5-3\right)\\ =10x^3+2x^2-x+2\)
\(b,H\left(x\right)=A\left(x\right)-B\left(x\right)=5x^3+x^2-3x+5-\left(5x^3+x^2+2x-3\right)\\ =5x^3+x^2-3x+5-5x^3-x^2-2x+3\\ =\left(5x^3-5x^3\right)+\left(x^2-x^2\right) +\left(-3x-2x\right)+\left(5+3\right)\\ =-5x+8\)
\(H\left(x\right)=0\\ \Rightarrow-5x+8=0\\ \Rightarrow x=\dfrac{8}{5}\)
vậy nghiệm của đa thức là \(x=\dfrac{8}{5}\)
a: A(x)=3/4x^3+5/4x^3+4x^2+7x^2+3/5x-8/5x-1+4
=2x^3+11x^2-x+3
b: Bậc là 3
Hệ số cao nhất là 2
c: C(x)=2x^3+12x^2-3x+3-2x^3-11x^2+x-3
=x^2-2x
C(X)=0
=>x=0 hoặc x=2
\(a,N\left(x\right)=x^2+3x^4-2x-x^2+2x^3=3x^4+2x^3+\left(x^2-x^2\right)-2x\\ =3x^4+2x^3-2x\\ P\left(x\right)=-8+5x-6x^3-4x+6=-6x^3+\left(5x-4x\right)+\left(-8+6\right)\\ =-6x^3+x-2\)
Bậc của N(x) là 4
Bậc của P(x) là 3
\(b,P\left(x\right)+N\left(x\right)=3x^4+2x^3-2x-6x^3+x-2\\ =3x^4+\left(2x^3-6x^3\right)+\left(-2x+x\right)-2\\ =3x^4-4x^3-x-2\)
\(c,B\left(x\right)=-2x^2\left(x^3-2x+5x^2-1\right)\\ =\left(-2x^2\right).x^3+\left(-2x^2\right).\left(-2x\right)+\left(-2x^2\right).5x^2+\left(-2x^2\right).\left(-1\right)\\ =-2x^5+4x^3-10x^4+2x^2\\ =-2x^5-10x^4+4x^3+2x^2\)
a: \(P\left(x\right)=x^5+2x^4-9x^3-x\)
\(Q\left(x\right)=5x^4+9x^3+4x^2-14\)
b: Hệ số cao nhất của P(x) là 1
Hệ số tự do của P(x) là 0
`a)`
`@P(x)=x^5-2x^2+7x^4-9x^3-x+2x^2-5x^4`
`P(x)=x^5+(7x^4-5x^4)-9x^3-(2x^2-2x^2)-x`
`P(x)=x^5+2x^4-9x^3-x`
`@Q(x)=5x^4-x^5+4x^2-6+9x^3-8+x^5`
`Q(x)=(-x^5+x^5)+5x^4+9x^3+4x^2-(6+8)`
`Q(x)=5x^4+9x^3+4x^2-14`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
`b)` Đa thức `P(x)` có:
`@` Hệ số cao nhất: `1`
`@` Hệ số tự do: `0`
a) \(M\left(x\right)=-2x^5+5x^2+7x^4-5x+8+2x^5-7x^4-4x^2+6\)
\(=\left(-2x^5+2x^5\right)+\left(7x^4-7x^4\right)+\left(5x^2-4x^2\right)-9x+\left(8+6\right)\)
\(=x^2-9x+14\)
\(N\left(x\right)=7x^7+x^6-5x^3+2x^2-7x^7+5x^3+3\)
\(=\left(7x^7-7x^7\right)+x^6-\left(5x^3-5x^3\right)+2x^2+3\)
\(=x^6+2x^2+3\)
b) Đa thức M(x) có hệ số cao nhất là 1
hệ số tự do là 14
bậc 2
Đa thức N(x) có hệ số cao nhất là 1
hệ số tự do là 3
bậc 6
Tổng 2 đa thức:
\(\begin{array}{l}A(x) + B(x) = - 8{x^5} + 6{x^4} + 2{x^2} - 5x + 1 + 8{x^5} + 8{x^3} + 2x - 3\\ = ( - 8 + 8){x^5} + 6{x^4} + 8{x^3} + 2{x^2} + ( - 5 + 2)x + (1 - 3)\\ = 6{x^4} + 8{x^3} + 2{x^2} - 3x - 2\end{array}\)
Vậy bậc của hai đa thức là tổng là: 4.
Hiệu 2 đa thức:
\(\begin{array}{l}A(x) - B(x) = - 8{x^5} + 6{x^4} + 2{x^2} - 5x + 1 - (8{x^5} + 8{x^3} + 2x - 3)\\ = - 8{x^5} + 6{x^4} + 2{x^2} - 5x + 1 - 8{x^5} - 8{x^3} - 2x + 3\\ = ( - 8 - 8){x^5} + 6{x^4} - 8{x^3} + 2{x^2} + ( - 5 - 2)x + (1 + 3)\\ = - 16{x^5} + 6{x^4} - 8{x^3} + 2{x^2} - 7x + 4\end{array}\)
Vậy bậc của hai đa thức là hiệu là: 5