Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi thương phép chia là Q(x) khi đó, ta có:
2x2 + ax +1 = (x-3).Q(x) +4
Với x=3 ta có: 2.32 + 3a +1= 0.Q(x) +4
19+3a = 4
=> 3a= -15
=> a= -5
Giai tương tự với các câu còn lại hoặc có thể dùng phương pháp đồng nhất hệ số
a: \(\Leftrightarrow10x^2-15x+8x-12+a+12⋮2x-3\)
=>a+12=0
hay a=-12
b: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4a-32-4a+28⋮x+4\)
=>-4a+28=0
=>a=7
c: \(\Leftrightarrow2x^3-2x-x^2+1+\left(a+2\right)x+b-1⋮x^2-1\)
=>a+2=0 và b-1=0
=>a=-2 và b=1
Giả sử \(2x^2+ax-4\)chia cho x + 4 = \(Q\left(x\right)\)
\(\Rightarrow2x^2+ax-4=\left(x+4\right)Q\left(x\right)\)
Vì đẳng thức trên đúng với mọi x thuộc R
=> Với x = -4
\(\Rightarrow2\left(-4\right)^2+a\left(-4\right)-4=0\)
\(\Rightarrow32-4a-4=0\)
\(\Rightarrow28=4a\Leftrightarrow a=7\)
Các bài khác tương tự thôi
b/ Gọi thương của phép chia \(\left(x^3+ax^2+5x+3\right)\)cho \(\left(x^2+2x+3\right)\)là \(Q_{\left(x\right)}\)
=> \(x^3+ax^2+5x+3=\left(x^2+2x+3\right)Q_{\left(x\right)}\)
=> Q(x) có bậc 1
=> \(Q_{\left(x\right)}=bx+c\)
=> \(x^3+ax^2+5x+3=\left(x^2+2x+3\right)\left(bx+c\right)\)
=> \(x^3+ax^2+5x+3=bx^3+2bx^2+3bx+cx^2+2cx+3c\)
=> \(x^3+ax^2+5x+3=bx^3+\left(2b+c\right)x^2+\left(3b+2c\right)x+3c\)
Ta có \(\hept{\begin{cases}x^3=bx^3\\3c=3\end{cases}}\)=> \(\hept{\begin{cases}b=1\\c=1\end{cases}}\)
=> \(x^3+ax^2+5x+3=x^3+3x^2+5x+3\)
Đồng nhất hệ số => a = 3
Lời giải:
a) Áp dụng định lý Bê-du về phép chia đa thức ta có:
Số dư khi chia đa thức \(f(x)=2x^2+ax+1\) cho $x-3$ là \(f(3)\)
Ta có:
\(f(3)=4\)
\(\Leftrightarrow 2.3^2+a.3+1=4\Rightarrow a=-5\)
b) Ta thêm bớt để đa thức $x^4+ax^2+b$ xuất hiện $x^2-x+1$
\(x^4+ax^2+b=(x^4+x)+ax^2-x+b\)
\(=x(x^3+1)+a(x^2-x+1)+ax-x-a+b\)
\(=x(x+1)(x^2-x+1)+a(x^2-x+1)+x(a-1)+(b-a)\)
\(=(x^2-x+1)(x^2+x+a)+x(a-1)+(b-a)\)
Từ trên suy ra đa thức $x^4+ax^2+b$ khi chia cho đa thức $x^2-x+1$ thì dư \(x(a-1)+(b-a)\)
Để phép chia là chia hết thì :
\(x(a-1)+(b-a)=0, \forall x\Leftrightarrow \left\{\begin{matrix} a-1=0\\ b-a=0\end{matrix}\right.\Rightarrow a=b=1\)
cau a dap an la 3 ban oi