K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 9 2019

Chỉ xác định được a; b với điều kiện a;b là số hữu tỉ, còn a; b là số thực thì có vô số giá trị thỏa mãn

Nếu a;b hữu tỉ:

\(f\left(1+\sqrt{2}\right)=a\left(1+\sqrt{2}\right)^2+b\left(1+\sqrt{2}\right)+2018=2019\)

\(\Leftrightarrow\left(3+2\sqrt{2}\right)a+\left(1+\sqrt{2}\right)b=1\)

\(\Leftrightarrow3a+2\sqrt{2}a+b+b\sqrt{2}=1\)

\(\Leftrightarrow\left(2a+b\right)\sqrt{2}=1-3a-b\)

Do a; b hữu tỉ \(\Rightarrow\left(2a+b\right)\sqrt{2}\) vô tỉ; \(1-3a-b\) hữu tỉ

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}2a+b=0\\1-3a-b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-2\end{matrix}\right.\)

28 tháng 11 2020

bạn chỉ cần thay vô sau đó ghép \(\sqrt{5}\)thành một nhóm là cho 2 vé đều \(=0\)rồi giải hề

10 tháng 6 2021

giả sử \(x=\left(\sqrt{2}+1\right)^2=3+2\sqrt{2}\) là một nghiệm của pt \(ax^2+bx+c=0\)

\(\Leftrightarrow a\left(3+2\sqrt{2}\right)^2+b\left(3+2\sqrt{2}\right)+c=0\)

\(\Leftrightarrow\left(17a+3b+c\right)+2\left(6a+b\right)\sqrt{2}=0\)

Nếu \(6a+b\ne0\Rightarrow\sqrt{2}=-\frac{17a+3b+c}{2\left(6a+b\right)}\inℚ\) (vô lý)

\(\Rightarrow17a+3b+c=6a+b=0\)

\(\Rightarrow\hept{\begin{cases}b=-6a\\c=a\end{cases}}\)

Thay b và c vào pt đã cho ta được: \(\left(x^2-6x+1\right)\left(x^2-6x+1\right)=0\)

pt này có hai nghiệm là: \(\hept{\begin{cases}x=3+2\sqrt{2}\\x=3-2\sqrt{2}\end{cases}}\)

17 tháng 3 2017

Trong mp tọa độ Oxy cho đường thẳng (d) y=mx+2 và parabol (P): y=x2. Tập hợp các giá trị của m để (d) cắt (P) tại 2 điểm phân biệt A và B sao cho diện tích tam giác OAB bằng 3 đvdt