Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x + 200 = 300 + 500 : 5
x + 200 = 300 + 100
x + 200 = 400
x = 400 - 200
x = 200
Tính nhanh:
1 + ( -3 ) + ( -6 ) + 4
= [ 1 + ( -3 ) ] + [ ( -6 ) + 4]
= -2 + ( -2 )
= - 4
x+200=300+500:5
x+200=300+100
x+200=400
x=400-200
x=200
tính nhanh
1+(-3)+(-6)+4
=[1+(-3)]+[(-6)+4]
=-2+(-2)
=-2.2
=-4
120 - x = 900 - 800
120 - x = 100
x = 120 - 100
x = 20
Vậy x = 20
Gọi các số phải tìm là a và b, giả sử a nhỏ hơn hoặc bằng b. Ta có (a, b) = 10 nên a = 10.a', b = 10.b', (a', b') = 1, a' nhỏ hơn hoăc bằng b'. Do đó a. b = 100.a'.b' (1). Mặt khác ab = [a, b]. (a, b) = 900. 10 = 9000 (2).
Từ (1) và (2) suy ra a'. b' = 90. Ta có các trường hợp sau :bạn tự suy ra nhé
hok tốt
A =\(\frac{2^2-1}{2^2}\)+ \(\frac{3^2-1}{3^2}\)+ \(\frac{4^2-1}{4^2}\)+,,,+
= 1 - \(\frac{1}{2^2}\)+ 1 - \(\frac{1}{3^2}\)+ ...+ 1 - \(\frac{1}{30^2}\)
= ( 1+ 1+1 +... + 1 ) - ( \(\frac{1}{2^2}\)+ \(\frac{1}{3^2}\)+ ... +\(\frac{1}{30^2}\))
= 29 - ( \(\frac{1}{2^2}\)+ \(\frac{1}{3^2}\)+ ... +\(\frac{1}{30^2}\))
Vậy A không là số nguyên
Ta có : \(\left(x-1\right)^2+\dfrac{1}{5.9}+\dfrac{1}{9.13}+...+\dfrac{1}{41.45}=\dfrac{49}{900}\)
\(\Leftrightarrow\left(x-1\right)^2+\dfrac{1}{4}.\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{41}-\dfrac{1}{45}\right)=\dfrac{49}{900}\)
\(\Leftrightarrow\left(x-1\right)^2+\dfrac{1}{4}\left(\dfrac{1}{5}-\dfrac{1}{45}\right)=\dfrac{49}{900}\)
\(\Leftrightarrow\left(x-1\right)^2=\dfrac{1}{100}\) \(\Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{1}{10}\\x-1=-\dfrac{1}{10}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11}{10}\\x=\dfrac{9}{10}\end{matrix}\right.\)
Vậy ...
Làm sao biết k rồi hay chưa
x+600=900-900
x+600=0
x=0-600
x=-600