Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giaỉ:
\(\frac{2x}{3}\)= \(\frac{3y}{4}\)=\(\frac{4z}{5}\)
\(\Rightarrow\)\(\frac{12x}{18}\)= \(\frac{12y}{16}\)=\(\frac{12z}{15}\)
áp dụng tính chất của dảy tỉ số bằng nhau ta có:
\(\frac{12x}{18}\)=\(\frac{12y}{16}\)= \(\frac{12z}{15}\) = 12x + 12y + \(\frac{12z}{18+16+15}\)= \(\frac{12\left(x+y+z\right)}{49}\)=\(\frac{12.49}{49}\)=12
\(\Rightarrow\)\(\frac{12x}{18}\)=12 \(\Rightarrow\)12x = 216 vậy x = 18
\(\frac{12y}{16}\)=12 \(\Rightarrow\)12y = 192 vậy y = 16
\(\frac{12z}{15}\)= 12 \(\Rightarrow\)12z = 180 vậy z= 15
vậy x = 18 ; y = 16 và z = 15
**** cho mình nha !!!
ta có \(\frac{x}{y}=\frac{7}{20}\Rightarrow\frac{x}{7}=\frac{y}{20}\Rightarrow\frac{x}{14}=\frac{y}{40}\Rightarrow\frac{2x}{28}=\frac{5y}{200}\left(1\right)\)
\(\frac{y}{z}=\frac{5}{8}\Rightarrow\frac{y}{5}=\frac{z}{8}\Rightarrow\frac{y}{40}=\frac{z}{64}\Rightarrow\frac{5y}{200}=\frac{2z}{128}\left(2\right)\)
\(\left(1\right)\&\left(2\right)\Rightarrow\frac{2x+5y-2z}{28+200-128}=\frac{100}{100}=1\)
\(\frac{2x}{28}=1\Rightarrow x=\frac{28.1}{2}=14\)
\(\frac{5y}{200}=1\Rightarrow y=\frac{200.1}{5}=40\)
\(\frac{2z}{128}=1\Rightarrow z=\frac{128.1}{2}=64\)
\(\frac{x}{y}=\frac{7}{20};\frac{y}{z}=\frac{5}{8}\Rightarrow\frac{x}{7}=\frac{y}{20};\frac{y}{5}=\frac{z}{8}\Rightarrow\frac{x}{35}=\frac{y}{100};\frac{y}{100}=\frac{z}{160}\Rightarrow\frac{x}{35}=\frac{y}{100}=\frac{z}{160}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{35}=\frac{y}{100}=\frac{z}{160}=\frac{2x+5y-2z}{2.35+5.100-2.160}=\frac{100}{250}\)= số lẽ sai đề
\(\frac{x}{2}-\left(\frac{3}{5}x-\frac{13}{5}\right)=-\left(\frac{7}{5}+\frac{7}{10}x\right)\)
\(\Rightarrow\frac{5x-6x+26+14+7x}{10}=0\Rightarrow6x+40=0\Rightarrow x=-\frac{20}{3}\)
b) Vì \(VT=25-y^2\le25\) nên \(VP=8\left(x-2012\right)^2\le25\Rightarrow\left(x-2012\right)^2\le\frac{25}{8}\)
Mà \(x\in Z\Rightarrow\left(x-2012\right)^2\in Z\) Hay \(\orbr{\begin{cases}\left(x-2012\right)^2=0\\\left(x-2012\right)^2=1\end{cases}}\)
Xét \(\left(x-2012\right)^2=0\Rightarrow x=2012\)
\(\Rightarrow25-y^2=0\Rightarrow\orbr{\begin{cases}y=-5\\y=5\end{cases}}\)(TM)
Xét \(\left(x-2012\right)^2=1\) thay vào ta được \(25-y^2=8\Rightarrow y^2=17\)(loại)
Vậy \(\left(x;y\right)=\left\{\left(2012;-5\right);\left(2012;5\right)\right\}\)
Nếu bn có mấy cái bài tập mà ở trong sgk thì mik nghĩ bn nên tham khảo trang Vietjack.com nha
~ Hok tốt , nhớ tk mik nha ~
theo mk thì bạn nên tham khảo tech12 "soạn toán 7 vnen tech12" nếu bạn học chương trình ms nha^^
Ta có : \(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}\Rightarrow1:\frac{3}{x-1}=1:\frac{4}{y-2}=1:\frac{5}{z-3}\)
\(\Rightarrow\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}\)
Đặt \(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=k\Rightarrow\hept{\begin{cases}x=3k+1\\y=4k+2\\z=5k+3\end{cases}}\)
Khi đó x + y + z = 18
<=> 3k + 1 + 4k + 2 + 5k + 3 = 18
=> 12k + 6 = 18
=> 12k = 12
=> k = 1
=> x = 4 ; y = 6 ; z = 8
Bài giải
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}=\frac{3+4+5}{x-1+y-2+z-3}=\frac{12}{12}=1\)
\(\Rightarrow\text{ }\hept{\begin{cases}x=3\text{ : }1+1=4\\y=4\text{ : }1+2=6\\z=5\text{ : }1+3=8\end{cases}}\)
\(\Rightarrow\text{ }x=4\text{ ; }y=6\text{ ; }z=8\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{3x-2z}{3\cdot3-2\cdot7}=\dfrac{15}{-5}=-3\)
Do đó: x=-9; y=-15; z=-21
cảm ơn bạn