K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2022

một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?

17 tháng 9 2016

1.A =( x-3)( x+3) + 15 - x2

   A=X2-3X+3X+15-X3

  A=15-X

2.B=(X -1) (X2+X+1) - X (X2+2) + 2X  

 B=X3+ X2+ X - X- X - 1 - X- 2X + 2X

B=   -1

3.C=(2X - 1 ) (4X+ 2X + 1) - X ( 8 X 2 + 1 ) + X

C=8X- 4X+4X- 2X +2 X - 1 - 8X22 - X + X

C=8X- 1 - 8X22

MK CHỈ LM ĐC TỚI ĐÓ THUI SAI CHỖ NÀO ĐỪNG TRÁCH VÌ MK YẾU PHẦN NÀY

10 tháng 9 2016

Dài 166

b) 2x2+3x-27=2x2-6x+9x-27=2x(x-3)+9(x-3)=(x-3)(2x+9)

13 tháng 12 2018

\(\frac{x^2+3x+9}{2x+10}.\frac{x+5}{x^3-27}\)

\(=\frac{x^2+3x+9}{2\left(x+5\right)}.\frac{x+5}{\left(x-3\right)\left(x^2+3x+9\right)}\)

\(=\frac{\left(x+5\right)\left(x^2+3x+9\right)}{2\left(x+5\right)\left(x-3\right)\left(x^2+3x+9\right)}\)

\(=\frac{1}{2\left(x-3\right)}\)

\(\left(\frac{6x+1}{x^2-6x}+\frac{6x-1}{x^2+6x}\right)\left(\frac{x^2-36}{x^2+1}\right)\)

\(=\left[\frac{6x+1}{x\left(x-6\right)}+\frac{6x-1}{x\left(x+6\right)}\right]\left[\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\right]\)

\(=\frac{\left(6x+1\right)\left(x+6\right)+\left(6x-1\right)\left(x-6\right)}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)

\(=\frac{6x^2+36x+x+6+6x^2-36x-x+6}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)

\(=\frac{12x^2+12}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)

\(=\frac{12\left(x^2+1\right).\left(x-6\right)\left(x+6\right)}{x\left(x-6\right)\left(x+6\right)\left(x^2+1\right)}\)

\(=\frac{12}{x}\)

1 tháng 10 2016

x+ 2x- 6x - 27

= (x3 - 3x2) + (5x2 - 15x) + (9x - 27)

= x2(x - 3) + 5x(x - 3) + 9(x - 3)

= (x - 3)(x2 + 5x + 9)   

1 tháng 10 2016

ket ban nha

9 tháng 11 2017

Ta có : 3x(2x - 7) - (6x + 1)(x - 15) - 2010 = 0

=> 6x2 - 21x - (6x+ x - 90x - 15) - 2010 = 0

=> 6x2 - 21x - 6x2 + 89x + 15 - 2010 = 0

=> 68x - 1995 = 0

 ? 

b) 2x(x - 2012) - x + 2012 = 0

=> 2x(x - 2012) - (x - 2012) = 0

=> (x - 2012) (2x - 1) = 0

⇔[

x−2012=0
2x−1=0

⇔[

x=2012
2x=1

⇔[

x=2012
x=12 

Vậy x = {2012;12 }

Ta có : 3x(2x - 7) - (6x + 1)(x - 15) - 2010 = 0

=> 6x2 - 21x - (6x+ x - 90x - 15) - 2010 = 0

=> 6x2 - 21x - 6x2 + 89x + 15 - 2010 = 0

=> 68x - 1995 = 0

 ? 

b) 2x(x - 2012) - x + 2012 = 0

=> 2x(x - 2012) - (x - 2012) = 0

=> (x - 2012) (2x - 1) = 0

\(\Leftrightarrow\orbr{\begin{cases}x-2012=0\\2x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2012\\2x=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2012\\x=\frac{1}{2}\end{cases}}\)

Vậy x = \(\left\{2012;\frac{1}{2}\right\}\)

a: \(=\dfrac{x^2+3x+9}{2\left(x+5\right)}\cdot\dfrac{\left(x+5\right)}{\left(x-3\right)\left(x^2+3x+9\right)}=\dfrac{1}{2\left(x-3\right)}\)

b: \(=\dfrac{\left(6x+1\right)\left(x+6\right)+\left(6x-1\right)\left(x-6\right)}{x\left(x-6\right)\left(x+6\right)}\cdot\dfrac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)

\(=\dfrac{6x^2+37x+6+6x^2-37x+6}{x}\cdot\dfrac{1}{x^2+1}=\dfrac{12}{x}\)