K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2017

A) x2+4y22+z22-4x-6z+15>0 <=> (x2-2×2×x+22)+4y2+(z2-2×3×z+32) +(15 -22-32) >0

<=>(x-2)2+4y22+(z-3)2

3 tháng 10 2017

B) giải

(2X)2+ 2×2X×1 +1 >=0 với mọi X (   (2x+1) )

=> (2x+1)2+2 >0

6 tháng 9 2018

a,\(x^2-8x+19=x^2-8x+16+3=\left(x-4\right)^2+3\ge3>0\forall x\)

3 tháng 7 2016

\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)

\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)

\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)

ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)

\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)

Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)

T i c k cho mình 1 cái nha mới bị trừ 50 đ

6 tháng 9 2018

a ) \(x^2-8x+19\)

\(=x^2-2x.4+16+3\)

\(=\left(x-4\right)^2+3\ge3\forall x\left(đpcm\right)\)

b ) \(3x^2-6x+5\)

\(=3\left(x^2-2x+\dfrac{5}{3}\right)\)

\(=3\left(x^2-2x+1+\dfrac{2}{3}\right)\)

\(=3\left[\left(x-1\right)^2+\dfrac{2}{3}\right]\)

\(=3\left(x-1\right)^2+2\ge2\forall x\left(đpcm\right)\)

c ) \(x^2+y^2-8x+4y+27\)

\(=\left(x^2-8x+16\right)+\left(y^2+4y+4\right)+7\)

\(=\left(x-4\right)^2+\left(y+2\right)^2+7\ge7\forall x\left(đpcm\right)\)

:D

9 tháng 6 2015

 a) x2-6x+10>0

<=>x2-6x+9+1>0

<=>(x-3)2+1>0(đúng với mọi x)

vậy x2-6x+10>0 với mọi x

b)x2-2x+y2+4y+6>0 

<=>x2-2x+1y2+4y+4+1>0

<=>(x-1)2+(y+2)2+1>0 (với mọi x,y)

Vậy x2-2x+y2+4y+6>0 với mọi x,y

9 tháng 8 2020

\(Tacó\):   \(C=x^2+2xy+y^2+y^2-6y+15\)

\(=\left(x^2+2xy+y^2\right)+\left(y^2-6y+9\right)+6\)

\(=\left(x+y\right)^2+\left(y-3\right)^2+6\)

\(Mà\)\(\left(x+y\right)^2\ge0\)với mọi x,y

             \(\left(y-3\right)^2\ge0\)với mọi y

\(\Rightarrow\left(x+y\right)^2+\left(y-3\right)^2+6>0\)

\(Hay\)\(x^2+2xy+y^2+y^2-6y+15>0\)\

       

8 tháng 8 2020

Ta có C = (x2 + 2xy + y2) + (y2 - 6x + 9) + 6 

= (x + y)2 + (y - 3)2 + 6 \(\ge6>0\)(đpcm)

9 tháng 8 2020

C = x2 + 2xy + y2 + y2 - 6y + 15 

C = ( x2 + 2xy + y2 ) + ( y2 - 6y + 9 ) + 6

C = ( x + y )2 + ( y - 3 )2 + 6 ≥ 6 > 0 ∀ x ( đpcm )

D = x2 + y2 + 6x + 10y + 30

D = ( x2 + 6x + 9 ) + ( y2 + 10y + 25 ) - 4

D = ( x + 3 )2 + ( y + 5 )2 - 4 ≥ -4 ( xem lại đề nhớ )

5 tháng 12 2019

\(x^2+y^2+z^2+2x-4y-6z+14\)

\(=\left(x^2+2x+1\right)+\left(y^2-4y+4\right)+\left(z^2-6z+9\right)\)

\(=\left(x+1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\left(y-2\right)^2\ge0\forall y\)\(\left(z-3\right)^2\ge0\forall z\)

\(\Rightarrow\left(x+1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2\ge0\forall x,y,z\)

hay \(x^2+y^2+z^2+2x-4y-6z+14\ge0\)\(\forall x,y,z\)

6 tháng 8 2019

làm tắt ko hiểu thì hỏi 

a) \(=x^2+2.xy.\frac{1}{2}+\frac{1}{4}y^2-\frac{1}{4}y^2+y^2+1\)

\(=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\)

b) \(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6x+9\right)+1\)

\(=\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1>0\)