Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo ở đây nha!
Tìm GTNN của - K2PI – TOÁN THPT | Chia sẻ Tài liệu, đề thi, hỗ trợ giải toán
\(A=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\\ A=\left(x^2-5x+4\right)\left(x^2-5x+6\right)\\ A=\left(x^2-5x+5-1\right)\left(x^2-5x+5+1\right)\\ A=\left(x^2-5x+5\right)^2-1\ge-1\)
đẳng thức xảy ra khi :
\(x^2-5x+5=0\\ x^2-2.\dfrac{5}{2}x+\dfrac{25}{4}=\dfrac{25}{4}-5\\ \left(x-\dfrac{5}{2}\right)^2=\dfrac{5}{4}\\ \Rightarrow\left[{}\begin{matrix}x-\dfrac{5}{2}=\sqrt{\dfrac{5}{4}}\\x-\dfrac{5}{2}=-\sqrt{\dfrac{5}{4}}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{5}{4}}+\dfrac{5}{2}=\dfrac{\sqrt{5}+5}{2}\\x=-\sqrt{\dfrac{5}{4}}+\dfrac{5}{2}=\dfrac{5-\sqrt{5}}{2}\end{matrix}\right.\)
vậy GTNN của A =-1 tại \(\left[{}\begin{matrix}x=\sqrt{\dfrac{5}{4}}+\dfrac{5}{2}=\dfrac{\sqrt{5}+5}{2}\\x=-\sqrt{\dfrac{5}{4}}+\dfrac{5}{2}=\dfrac{5-\sqrt{5}}{2}\end{matrix}\right.\)
Đặt \(A=x^2+y^2+xy+3x+3y+2018\)
\(4.A=4x^2+4y^2+4xy+12x+12y+8072\)
\(4.A=\left(4x^2+4xy+y^2\right)+3y^2+12x+12y+8072\)
\(4.A=\left[\left(2x+y\right)^2+2\left(2x+y\right).3+9\right]+3\left(y^2+2y+1\right)+8060\)
\(4.A=\left(2x+y+3\right)^2+3\left(y+1\right)^2+8060\)
Mà \(\left(2x+y+3\right)^2\ge0\forall x;y\)
\(\left(y+1\right)^2\ge0\forall y\)\(\Rightarrow3\left(y+1\right)^2\ge0\forall y\)
\(\Rightarrow4.A\ge8060\)
\(\Leftrightarrow A\ge2015\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}2x+y+3=0\\y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-1\end{cases}}\)
Vậy ...
\(A=x^2+y^2+xy+3x+3y+2018\)
\(\Leftrightarrow2A=2x^2+2y^2+2xy+6x+6y+4036\)
\(=\left(x^2+2xy+y^2\right)+\left(x^2+6x+9\right)+\left(y^2+6y+9\right)+4018\)
\(=\left(x+y\right)^2+\left(x+3\right)^2+\left(y+3\right)^2+4018\)
\(\Rightarrow A=\dfrac{\left(x+y\right)^2+\left(x+3\right)^2+\left(y+3\right)^2}{2}+2009\)
Ta có : \(\left\{{}\begin{matrix}\left(x+y\right)^2\ge0\\\left(x+3\right)^2\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\dfrac{\left(x+y\right)^2+\left(x+3\right)^2+\left(y+3\right)^2}{2}+2009\ge2009\)
Dấu = xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(x+3\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow x=y=-3\)
Vậy \(Min_A=2009\Leftrightarrow x=y=-3\)
Đặt \(A=x^2-xy+y^2-3x-3y+2029\)
\(\Leftrightarrow2A=2x^2-2xy+2y^2-6x-6y+4058\)
\(\Leftrightarrow2A=\left(x^2-2xy+y^2\right)+\left(x^2-6x+9\right)+\left(y^2-6y+9\right)+4040\)
\(\Leftrightarrow2A=\left(x-y\right)^2+\left(x-3\right)^2+\left(y-3\right)^2+4040\ge4040\forall x;y\)
\(\Leftrightarrow A\ge\dfrac{4040}{2}=2020\forall x;y\)
Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x-3=0\\y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=3\\y=3\end{matrix}\right.\) \(\Leftrightarrow x=y=3\)
Vậy GTNN của b/t trên là : \(2020\Leftrightarrow x=y=3\)
Ta có \(M=x^2+xy+y^2-3x-3y+2004\)
nên \(4M=4x^2+4xy+4y^2-12x-12y+8016\)
\(=4x^2+4xy+y^2+3y^2-12x-6y-6y+3+9+8004\)
\(=\left(4x^2+4xy+y^2\right)-\left(12x+6y\right)+9+\left(3y^2-6y+3\right)+8004\)
\(=\left(2x+y\right)^2-6\left(2x+y\right)+9+3\left(y^2-2y+1\right)+8004\)
\(=\left(2x+y-3\right)^2+3\left(y-1\right)^2+8004\)
Lại có: \(\left(2x+y-3\right)^2\ge0\) và \(3\left(y-1\right)^2\ge0\)
\(\Rightarrow4M=\left(2x+y-3\right)^2+3\left(y-1\right)^2+8004\ge8004\) với mọi \(x;y\)
\(\Rightarrow M\ge2001\)
Dấu \(''=''\) xảy ra \(\Leftrightarrow\left(2x+y-3\right)^2=0\) và \(3\left(y-1\right)^2=0\)
\(\Leftrightarrow2x+y-3=0;y-1=0\)
\(\Leftrightarrow x=1;y=1\)
Vậy, GTNN của M = 2001 khi và chỉ khi x = y = 1