Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biến đổi biểu thức tương đương, ta có : x2−12=y2x2−12=y2
Lại có : x,y nguyên dương.
⇒x>y⇒x>y và x phải là số lẽ.
Từ đó đặt x=2k+1x=2k+1 (k nguyên dương)
Ta có biểu thức tương đương : 2k(k+1)=y2(∗)2k(k+1)=y2(∗)
Để ý rằng: y là 1 số nguyên tố nên y2y2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là {1 ; y ; y^2}
Từ (*) dễ thấy y2⋮2⇒y=2⇒k=1⇒x=3y2⋮2⇒y=2⇒k=1⇒x=3
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2
copy bài như thế này mà tự xưng là chiến thắng sao ko bít nhục à VICTOR_Nobita Kun
Mình chỉ làm được câu a thôi,bạn hãy thử lại nhé
a.(2n+5) chia hết cho (n-1)
Ta có :2n+5=2n-1+6
Vì 2n-1 chia hết cho n-1 =>2n-1+6 chia hết cho n-1 khi 6 chia hết cho n-1
=>n-1 thuộc Ư(6)
Mà Ư(6)={-1;1;-2;2;-3;3;-6;6}
=>n-1 thuộc{-1;1;-2;2;-3;3;-6;6}
Ta có bảng giá trị sau :
n-1 | -1 | 1 | -2 | 2 | -3 | 3 | -6 | 6 |
n | 0 | 2 | -1 | 3 | -2 | 4 | -5 | 7 |
Vậy n thuộc {0;2;-1;3;-2;4;-5;7}
HÌNH NHƯ BỊ SAI KẾT QUẢ NHƯNG MÌNH CHẮC CHẮN CÁCH LÀM
Vì \(x;y\inℤ\Rightarrow\hept{\begin{cases}3-x\inℤ\\2y-2\inℤ\end{cases}}\)
mà 4 = 2.2 = (-2) . (-2) = 1.4 = (-1).(-4)
Lập bảng xét 6 trường hợp ta có :
\(3-x\) | \(1\) | \(4\) | \(2\) | \(-2\) | \(-1\) | \(-4\) |
\(2y-2\) | \(4\) | \(1\) | \(2\) | \(-2\) | \(-4\) | \(-1\) |
\(x\) | \(2\) | \(-7\) | \(1\) | \(5\) | \(4\) | \(7\) |
\(y\) | \(3\) | \(\frac{3}{2}\) | \(2\) | \(0\) | \(-1\) | \(\frac{1}{2}\) |
Vậy các cặp (x;y) thỏa mãn là : (2;3) ; (1;2) ; (5;0) ; (4;-1)
\(\left(3-x\right)\left(2y-2\right)=4\)
\(\Rightarrow2\left(3-x\right)\left(y-1\right)=4\)
\(\Rightarrow\left(3-x\right)\left(y-1\right)=2\)
TH1 : \(\hept{\begin{cases}3-x=1\\y-1=2\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}}\)
Th2 : \(\hept{\begin{cases}3-x=2\\y-1=1\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}}\)
TH3 : \(\hept{\begin{cases}3-x=-1\\y-1=-2\end{cases}\Rightarrow\hept{\begin{cases}x=4\\y=-1\end{cases}}}\)
TH4 : \(\hept{\begin{cases}3-x=-2\\y-1=-2\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}}\)
\(\left(3x-5\right)⋮\left(x+2\right)\)
\(\Rightarrow3.\left(x+2\right)-11⋮\left(x+2\right)\)
Vì \(3.\left(x+2\right)⋮\left(x+2\right)\)
\(\Rightarrow11⋮\left(x+2\right)\)
\(\Rightarrow\left(x+2\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Tự lập bảng :) T lười qá
Lời giải:
$117=(2y+1)^2-x^2=(2y+1-x)(2y+1+x)$
Vì $x,y$ nguyên nên $2y+1-x, 2y+1+x$ nguyên. Do đó ta có bảng sau: