K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2019

x2 +6xx+9=4x2-4x+1

<=>3x2-10x -8=0

<=>3x2-12x+2x-8 =0

<=>3x(x-4)+2(x-4)=0

<=>(3x+2)(x-4)=0

<=>x =-2/3 hoặc x=4

x+6xx+9=4x2-4x+1

<=>3x2-10x -8=0

<=>3x2-12x+2x-8 =0

<=>3x(x-4)+2(x-4)=0

<=>(3x+2)(x-4)=0

<=>x =-2/3 hoặc x=4

13 tháng 7 2017

a, \(\left(x+3\right)^3-\left(x+2\right)\left(x-2\right)-6x^2-20\)

\(=x^3+9x^2+27x+27-\left(x^2-4\right)-6x^2-20\)

\(=x^3+9x^2+27x+27-x^2+4+6x^2+20\)

\(=x^3+14x^2+27x+51\)

b, \(\left(2x+3\right)\left(4x^2-6x+9\right)-\left(2x-3\right)\left(4x^2+6x+9\right)\)

\(=8x^3-12x^2+18x+12x^2-18x+18-\left(8x^3+12x^2+18x-12x^2-18x-18\right)\)

\(=8x^3+18-8x^3+18=36\)

c, \(\left(2x-1\right)\left(4x^2+2x+1\right)\left(2x+1\right)\left(4x^2-2x+1\right)\)

\(=\left(8x^3+4x^2+2x-4x^2-2x-1\right)\left(8x^3-4x^2+2x+4x^2-2x+1\right)\)

\(=\left(8x^3-1\right)\left(8x^3+1\right)=\left(8x^3\right)^2-1\)

\(=64x^5-1\)

d, \(\left(x+4\right)\left(x^2-4x+16\right)-\left(50+x^2\right)\)

\(=x^3-4x^2+16x+4x^2-16x+64-50-x^2\)

\(=x^3-x^2+14\)

Chúc bạn học tốt!!!

13 tháng 7 2017

Cảm ơn nha !!!

a) \(\frac{4x+3}{6x-4}+\frac{5x-9}{6x-4}\)

\(=\frac{4x+3+5x-9}{2\left(3x-2\right)}=\frac{9x-6}{2\left(3x-2\right)}\)

\(=\frac{3\left(3x-2\right)}{2\left(3x-2\right)}=\frac{3}{2}\)

b) \(\frac{2}{x-1}+\frac{3}{x+1}-\frac{4x-2}{x^2-1}\)

\(=\frac{2\left(x+1\right)+3\left(x-1\right)-4x+2}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x+1}{\left(x-1\right)\left(x+1\right)}=\frac{1}{x-1}\)

28 tháng 12 2019

a) \(\frac{4x+3}{6x-4}+\frac{5x-9}{6x-4}\)

\(=\frac{4x+3+5x-9}{6x-4}\)

\(=\frac{9x-6}{6x-4}\)

\(=\frac{3.\left(3x-2\right)}{2.\left(3x-2\right)}\)

\(=\frac{3}{2}.\)

b) \(\frac{2}{x-1}+\frac{3}{x+1}-\frac{4x-2}{x^2-1}\)

\(=\frac{2}{x-1}+\frac{3}{x+1}-\frac{4x-2}{\left(x-1\right).\left(x+1\right)}\)

\(=\frac{2.\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}+\frac{3.\left(x-1\right)}{\left(x-1\right).\left(x+1\right)}-\frac{4x-2}{\left(x-1\right).\left(x+1\right)}\)

\(=\frac{2x+2}{\left(x-1\right).\left(x+1\right)}+\frac{3x-3}{\left(x-1\right).\left(x+1\right)}+\frac{-\left(4x-2\right)}{\left(x-1\right).\left(x+1\right)}\)

\(=\frac{2x+2+3x-3-4x+2}{\left(x-1\right).\left(x+1\right)}\)

\(=\frac{x+1}{\left(x-1\right).\left(x+1\right)}\)

\(=\frac{1}{x-1}.\)

Chúc bạn học tốt!

31 tháng 7 2023

p) \(\left(9-x\right)\left(x^2+2x-3\right)\)

\(=9\left(x^2+2x-3\right)-x\left(x^2+2x-3\right)\)

\(=9x^2+18x-27-x^3-2x^2+3x\)

\(=-x^3+7x^2+21x-27\)

n) \(\left(-x+3\right)\left(x^2+x+1\right)\)

\(=-x\left(x^2+x+1\right)+3\left(x^2+x+1\right)\)

\(=-x^3-x^2-x+3x^2+3x+3\)

\(=-x^2+2x^2+2x+3\)

o) \(\left(-6x+\dfrac{1}{2}\right)\left(x^2-4x+2\right)\)

\(=-6x\left(x^2-4x+2\right)+\dfrac{1}{2}\left(x^2-4x+2\right)\)

\(=-6x^3+24x^2-12x+\dfrac{1}{2}x^2-2x+1\)

\(=-6x^3+\dfrac{49}{2}x^2-14x+1\)

q) \(\left(6x+1\right)\left(x^2-2x-3\right)\)

\(=6x\left(x^2-2x-3\right)+\left(x^2-2x-3\right)\)

\(=6x^3-12x^2-18x+x^2-2x-3\)

\(=6x^3-11x^2-20x-3\)

r) \(\left(2x+1\right)\left(-x^2-3x+1\right)\)

\(=2x\left(-x^2-3x+1\right)+\left(-x^2-3x+1\right)\)

\(=-2x^3-6x^2+2x-x^2-3x+1\)

\(=-2x^3-7x^2-x+1\)

u) \(\left(2x-3\right)\left(-x^2+x+6\right)\)

\(=2x\left(-x^2+x+6\right)-3\left(-x^2+x+6\right)\)

\(=-2x^3+2x^2+12x+3x^2-3x-18\)

\(=-2x^3+5x^2+9x-18\)

s) \(\left(-4x+5\right)\left(x^2+3x-2\right)\)

\(=-4x\left(x^2+3x-2\right)+5\left(x^2+3x-2\right)\)

\(=-4x^3-12x^2+8x+5x^2+15x-10\)

\(=-4x^3-7x^2+23x-10\)

v) \(\left(-\dfrac{1}{2}x+3\right)\left(2x+6-4x^3\right)\)

\(=-\dfrac{1}{2}x\left(2x+6-4x^3\right)+3\left(2x+6-4x^3\right)\)

\(=-x^2-3+2x^4+6x+18-12x^3\)

\(=2x^4-12x^3-x^2+6x+15\)

p: (-x+9)(x^2+2x-3)

=-x^3-2x^2+3x+9x^2+18x-27

=-x^3+7x^2+21x-27

n: (-x+3)(x^2+x+1)

=-x^3-x^2-x+3x^2+3x+3

=-x^3+2x^2+2x+3

o: (-6x+1/2)(x^2-4x+2)

=-6x^3+24x^2-12x+1/2x^2-2x+1

=-64x^3+49/2x^2-14x+1

q: (6x+1)(x^2-2x-3)

=6x^3-12x^2-18x+x^2-2x-3

=6x^3-11x^2-20x-3

r: (2x+1)(-x^2-3x+1)

=-2x^3-6x^2+2x-x^2-3x+1

=-2x^3-7x^2-x+1

u: =-2x^3+2x^2+12x+3x^2-3x-18

=-2x^3+5x^2+9x-18

s: =-4x^3-12x^2+8x+5x^2+15x-10

=-4x^3-7x^2+23x-10

d) đề là gì bn

2x+3)(4x26x+9)2(4x31)(2x+3)(4x2−6x+9)−2(4x3−1)

=8x3+278x3+2=29\

e)

(4x1)3(4x3)(16x2+3)(4x−1)3−(4x−3)(16x2+3)

=64x348x2+12x1(64x3+12x48x29)=64x3−48x2+12x−1−(64x3+12x−48x2−9)

=64x348x2+12x164x312x+48x2+9=64x3−48x2+12x−1−64x3−12x+48x2+9

=8

29 tháng 2 2020

đề không rõ nên mình làm như này:

c) \(x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\)

\(=2x^2+x-x^3-2x^2+x^3-x+3\)

\(=3\)

d) \(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)

\(=8x^3-12x^2+18x+12x^2-18x+27-8x^3+2\)

\(=29\)

29 tháng 2 2020

\(c, C=x(2x+1)-x^2(x+2)+x^3-x+3\)

\(C=2x^2+x-x^3-2x^2+x^3-x+3\)

\(C=3\)

\(d, (2x+3)(4x^2-6x+9)-2(4x^3-1)\)

\(=(8x^3+27)-2(4x^3-1)\)

\(=8x^3+27-8x^3+2\)\(=29\)

\(e, (4x-1)^3-(4x-3)(16x^2+3)\)

\(=(64x^3-48x^2+12x-1)-(64x^3+12x-48x^2-9)\)

\(=64x^3-48x^2+12x-1-64x^3-12x+48x^2+9\)

\(=8\)

\(f, (x+1)^3-(x-1)^3-6(x+1)(x-1)\)

\(=(x^3+3x^2+3x+1)-(x^3-3x^2+3x-1)-6(x^2-1)\)

\(=x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+6\)

\(=8\)

10 tháng 10 2017

a) (x2-6xy+9y2):(3y-x)

= (x-3y)2:(3y-x)

=(3y-x)2:(3y-x)

= 3y-x

b) (8x3-1):(4x2+2x+1)

=[(2x)3-1]:(4x2+2x+1)

= (2x-1)(4x2+2x+1):(4x2+2x+1)

= 2x-1

10 tháng 10 2017

c) (4x4-9):(2x2-3)

=(2x2-3)(2x2+3):(2x2-3)

=2x2+3

d) (8x3-27):(4x2+6x+9)

=(2x-3)(4x2+6x+9):(4x2+6x+9)

=2x-3

9 tháng 8 2021

1, \(x^3+4x^2+4x=0\Leftrightarrow x\left(x^2+4x+4\right)=0\)

\(\Leftrightarrow x\left(x+2\right)^2=0\Leftrightarrow x=-2;x=0\)

2, \(\left(x+3\right)^2-4=0\Leftrightarrow\left(x+3-2\right)\left(x+3+2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=1\)

3, \(x^4-9x^2=0\Leftrightarrow x^2\left(x^2-9\right)=0\)

\(\Leftrightarrow x^2\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=0;\pm3\)

4, \(x^2-6x+9=81\Leftrightarrow\left(x-3\right)^2=9^2\)

\(\Leftrightarrow\left(x-3-9\right)\left(x-3+9\right)=0\Leftrightarrow\left(x-12\right)\left(x+6\right)=0\Leftrightarrow x=-6;x=12\)

5, em xem lại đề nhé

9 tháng 8 2021

à lag tý @@

5, \(x^3+6x^2+9x-4x=0\Leftrightarrow x^3+6x^2+5x=0\)

\(\Leftrightarrow x\left(x^2+6x+5\right)=0\Leftrightarrow x\left(x^2+x+5x+5\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=-1;x=0\)

7 tháng 9 2021

a) \(x^2-64=0\)

\(\Leftrightarrow\left(x-8\right)\left(x+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)

b) \(4x^2-4x+1=0\)

\(\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

c) \(9-6x+x^2=0\)

\(\Leftrightarrow\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

a: Ta có: \(x^2-64=0\)

\(\Leftrightarrow\left(x-8\right)\left(x+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)

b: Ta có: \(4x^2-4x+1=0\)

\(\Leftrightarrow\left(2x-1\right)^2=0\)

hay \(x=\dfrac{1}{2}\)

c: ta có: \(x^2-6x+9=0\)

\(\Leftrightarrow\left(x-3\right)^2=0\)

hay x=3

24 tháng 7 2016

\(\left(+\right)A=\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right).\)

\(A=8x^3-6x^2-18x+27-8x^3+2\)

\(A=6x^2-18x+29\)

\(\left(+\right)B=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x-1\right)\left(x+1\right)\)

\(B=x^3-3x^2+3x+1-x^3-3x^2-3x-1+6\left(x^2-1\right)\)

\(B=-6x^2+6x^2-6\)

\(B=-6\)