K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2019

x- 4y- 6x - 6y

=((x2 - (2y)2) - (6x + 6y)

=(x - 2y)(x+2y) - 6(x+y)

27 tháng 9 2019

special thing ican pial on the raint day, they can say (x2) we all crazy. dhcuihcue8uf89efefidjmcdc kf h fhv8y8gyu8r9gynw98yfnryfudfhsjcndskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkskuihhhhuhmillion dream we gona makenduxcjsdfbc dfgvefvg efhvbidhccccccccccccccccccbjhsdbcshb hjcb snkz .

answer= foethe www  

27 tháng 9 2019

Bộ bạn ko biết ghi đề bài hả xuống tiểu học đi nha

6 tháng 1 2021

a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)

\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)

\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)

Vậy MaxQ=10 khi x=2, y=-2

b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)

\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)

Vậy MaxA=14 khi x=-3

+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)

\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)

\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)

Vậy MaxB=5 khi x=-1/2, y=1/3

c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)

Vậy MinP=2 khi x=1, y=-3

22 tháng 8 2018

ta có : \(4x^2+4y^2-2xy-6x-6y+6\)

\(=x^2-2xy+y^2+3x^2-6x+3+3y^2-6y+3\)

\(=\left(x-y\right)^2+3\left(x-1\right)^2+3\left(y-1\right)^2\ge0\forall x;y\left(đpcm\right)\)

30 tháng 3 2018

Ta có:

\(A=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\)

Áp dụng bđt Minkowski, ta có:

\(\Rightarrow A=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\)

\(A=\sqrt{\left(3-x\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\)\(\ge\sqrt{\left(3-x+x+1\right)^2+\left(\sqrt{2}+\sqrt{3}\right)^2\left(y+1\right)^2}\)

\(A=\sqrt{4^2+\left(\sqrt{2}+\sqrt{3}\right)^2\left(y+1\right)^2}\ge\sqrt{4^2}=4\)

\(\Rightarrow A\ge4.Đ\text{TXR}\Leftrightarrow\orbr{\begin{cases}x=1;y=-1\\x=3;y=-1\end{cases}}\)

Dấu "=" xảy ra khi (x; y) = (3; -1)

26 tháng 8 2019

phân tích đa thức thành nhân tử

a, 6x^2 + 7xy + 2y^2

=6x^2+3xy+4xy+2y^2

=3x(x+y)+2y(x+y)

=(3x+2y)(x+y)

b, 9x^2 - 9xy - 4y^2

=9x^2 +3xy-12xy-4y^2

=3x(x+y)-4y(x+y)

=(3x+4y)(x+y)

c, x^2 - y^2 + 10x - 6y + 16=x^2-y^2+6x-6y+4x+16=x(x+6)-y(x+6)+4(x+6)=(x-y+4)(x+6)

Bài làm

a, 6x2 + 7xy + 2y2

= 6x2 + 3xy + 4xy + 2y2 

= ( 6x2 + 3xy ) + ( 4xy + 2y2 )

= 3x( 2x + y ) + 2y( 2x + y )

= ( 2x + y )( 3x + 2y )

b, 9x2 - 9xy - 4y2 

= 9x2 - 12xy + 3xy - 4y2 

= ( 9x2 - 12xy ) + ( 3xy - 4y2 )

= 3x( 3x - 4y ) + y ( 3x - 4y )

= ( 3x + y )( 3x - 4y )

c, x2 - y2 + 10x - 6y + 16

 = x2 - y2 - 6x + 6y + 4x + 16

= x( x + 6 ) - y( x + 6 ) + 4( x + 6 )

= ( x - y + 4 )( x + 6 )

# Học tốt #

7 tháng 8 2017

1.

\(x^2\)+\(y^2\)+2y-6x+10=0

=> \(x^2\)-6x+9 +\(y^2\)+2y+1=0

=> (x-3)\(^2\)+(y+1)\(^2\)=0

pt vô nghiệm

7 tháng 8 2017

4.

=> \(x^2\)+8x+16+(3y)\(^2\)-2.3.2y+4=0

=> (x+4)\(^2\)+(3y-2)\(^2\)=0

pt vô nghiệm