Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> x2 -4+3x2= 4x2+4x+1+2x
<=> 4x^2 - 4= 4x^2 +6x +1
<=> - 4=6x +1
<=> 6x= -5
<=> x= \(-\frac{5}{6}\)
1) \(x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)\)
\(=x\left(x^2-16\right)\)
\(=x^3-16x-\left(x^2+1\right)\left(x^2-1\right)\)
\(=x^3-16x-x^4+1\)
b) \(7x\left(4y-x\right)+4y\left(y-7x\right)-2\left(2y^2-3.5x\right)\)
\(=28xy-7x^2+4y\left(y-7x\right)-2\left(2y^2-3.5x\right)\)
\(=28xy-7x^2+4y^2-28xy-4y^2+7x\)
\(=-7x^2+7x\)
c) \(\left(3x-1\right)\left(2x-5\right)-4\left(2x^2-5x+2\right)\)
\(=6x^2-17x+5-4\left(2x^2-5x+2\right)\)
\(=6x^2-17x+5-8x^2+20x-8\)
\(=-2x^2+3x-3\)
a) x(x+4)(x-4)-(x2+1)(x2-1)
=>x(x2-42)-(x4-12)
=>x3-16x-x4+1
=>-x4-x3-15x
b) 7x(4y-x)+4y(y-7x)-2(2y2-3.5x)
=>28xy-7x2+4y2-28xy-4y2+30x
=>-7x2+30x
c) (3x+1)(2x-5)-4(2x2-5x+2)
=>6x2-15x+2x-5-8x2+20x-8
=>-2x2+7x-13
\(a,x^2-4x+1=0.\)
\(\text{Áp dụng biệt thức }\Delta=b^2-4ac\text{, ta có:}\)(Lớp 9 kì 2 hok)
\(\Delta=-4^2-4.1.1=16-4=12\)
\(\Rightarrow\text{pt có 2 nghiệm }\orbr{\begin{cases}x_1=\frac{4-\sqrt{12}}{2}=2-\sqrt{3}\\x_2=\frac{4+\sqrt{12}}{2}=2+\sqrt{3}\end{cases}}\)
b,bn xem lại đề nếu đúng nói mk 1 tiếng mk làm tiếp cho
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)
Đặt \(x^2+7x=t\)
\(\left(t+10\right)\left(t+12\right)-8=t^2+22t+120-8\)
\(=t^2+22t+112=\left(t+8\right)\left(t+14\right)\)
Theo cách đặt \(=\left(x^2+7x+8\right)\left(x^2+7x+14\right)\)
a) A=x^2+4x+4=(x+2)^2.
Giờ ta tính giá trị của đa thức A với x=98:
A=(98+2)^2=100^2=10000
b) B=x^3+9x^2+27x+27=(x+3)^3.
Thế x=-103 => (-103+3)^3=-1000000
c) Tách C = a⋅b−a⋅c+2⋅c−2⋅b rồi kết hợp lại thành C=(a−2)⋅b+(2−a)⋅c.
Thế a,b,c vào được vậy
C=(2−2)⋅1.007+(2−2)⋅(−0.006) =0
d) Bài này khó quá mà tui nghĩ là đưa mấy cặp (2023^2-2022^2) thành dạng a^2-b^2=(a-b)(a+b) á
d: D=(2023^2-2022^2)+(2021^2-2020^2)+...+(3^2-2^2)+(1^2-0^2)
=2023+2022+...+3+2+1+0
=2023*2024/2=2047276
\(=\left(x^3-2x^2+x+2x^2-4x+2-2x+7\right):\left(x^2-2x+1\right)\\ =\left[\left(x^2-2x+1\right)\left(x+2\right)-2x+7\right]:\left(x^2-2x+1\right)\\ =x+2\left(dư:-2x+7\right)\)
\(\left(x^2-2x+4\right)\left(x+2\right)-x\left(x-1\right)\left(x+1\right)+3=0\)\(\Leftrightarrow x^2\left(x+2\right)-2x\left(x+2\right)+4\left(x+2\right)-x\left(x-1\right)\left(x+1\right)+3=0\)\(\Leftrightarrow x^3+2x^2-2x^2-4x+4x+8-\left[x^2\left(x+1\right)-x\left(x+1\right)\right]+3=0\)
\(\Leftrightarrow x^3+\left(2x^2-2x^2\right)+\left(-4x+4x\right)+8-\left(x^3+x^2-x^2-x\right)+3=0\)
\(\Leftrightarrow x^3+8-\left(x^3-x\right)+3=0\)
\(\Leftrightarrow x^3+\left(8+3\right)-x^3+x=0\)
\(\Leftrightarrow\left(x^3-x^3\right)+11+x=0\)
\(\Leftrightarrow11+x=0\)
\(\Leftrightarrow x=-11\)
Vậy x = -11